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Multistationarity in biochemical reaction networks and
positive solutions of sparse polynomial systems

Abstract

The motivation of this work is to apply and develop algebraic and geometric
tools for the study of multistationarity in biochemical networks and, more generally,
positive solutions of sparse polynomial systems.

We start by presenting a general framework to find coefficients for which a real
sparse polynomial system has more than one positive solution, based on the re-
cent article by Bihan, Santos, and Spaenlehauer [7]. We apply this approach to
find reaction rate constants and total conservation constants in biochemical reaction
networks for which the associated dynamical system is multistationary. Moreover,
we propose a mixed approach, considering different supports for each polynomial.
We exemplify our theoretical results in different biochemical networks of interest of
arbitrary size and number of variables. In particular, our results are the key tools
to identify multistationarity regions for enzymatic cascades of Goldbeter–Koshland
loops with an arbitrary number of layers, when a same phosphatase catalyzes the
transfer of phosphate groups at two different layers.

We also use this method to study the distributive n-site phosphorylation system.
We give joint conditions on the reaction rate constants and the total conservation
constants that ensure n+1 positive steady states for n even (and n steady states for
n odd), only assuming in the modeling that 1

4
of the intermediate complexes occur

in the reaction mechanism. In this framework of elimination of intermediates, we
obtain general conditions built on results from [42], to extend nondegenerate steady
states of the reduced network to the original network, under certain conditions in
the reaction rate constants.

Finally, for certain sparse polynomial systems, we give conditions on the support
and coefficients that guarantee the existence of at least one positive real root, based
on degree theory and Gale duality.

Keywords: chemical reaction networks; multistationarity; sparse polynomial
system; positive solutions.
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Introduction

The objective of this thesis is to apply and develop algebraic and geometric tools for
the study of multistationarity in biochemical reaction networks and, more generally,
positive solutions of sparse polynomial systems.

Chemical Reaction Network Theory (CRNT) has been development over the
last five decades, through the seminal works of Horn and Jackson [64, 65, 66], Fein-
berg [30, 31, 33, 34, 35], and Vol’pert [106]. These systems have a wide range of
applications in the physical sciences and play an important role in systems biology.

We can approach these biochemical reaction networks by a continuous dynamic
modeling. In general, the nonlinearities present in molecular networks prevent math-
ematical analysis of network behavior, which has been traditionally studied by nu-
merical simulation. In general, this entails the difficulty (or impossibility) of es-
timating the parameters. However, molecular networks with mass-action kinetics
give rise to polynomial dynamical systems, whose steady states are, therefore, zeros
of a polynomial system. These equations may be analyzed by algebraic methods,
in which parameters are treated as symbolic expressions whose numerical values do
not have to be known in advance.

Karin Gatermann introduced the connection between mass-action kinetics and
computational algebra between 2001 and 2005 [49, 50, 51]. Gunawardena and collab-
orators also started approaching results from CRNT with algebraic tools over the last
years [59, 60, 74, 102, 103]. In [18], Craciun et al. studied toric dynamical systems,
with an algebro-geometric perspective. Since then, more algebraic tools have been
introduced by different authors, see for example [22, 26, 41, 43, 61, 69, 87, 84, 91].

For a better understanding of the outline of this work, we introduce basic con-
cepts on chemical reaction networks in the following paragraphs, that we will develop
in detail in Chapter 1.

A reaction network G on a given set of s chemical species is a finite directed graph
whose edges R represent the reactions and are labeled by parameters κ ∈ R|R|>0 ,
known as reaction rate constants, and whose vertices are labeled by complexes,
usually represented as nonnegative integer linear combinations of species. After
numbering the species, a complex can be identified with a vector in Zs≥0. Under
mass-action kinetics, the network G defines the following autonomous system of
ordinary differential equations in the concentrations x1, x2, . . . , xs of the species as
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2 INTRODUCTION

functions of time t:

ẋ =

(
dx1

dt
,
dx2

dt
, . . . ,

dxs
dt

)
= f(x) :=

∑
y→y′∈R

κyy′ x
y (y′ − y),

where x = (x1, x2, . . . , xs), f = (f1, . . . , fs), x
y = xy1

1 x
y2

2 . . . xyss and y → y′ ∈ R
indicates that the complex y reacts to the complex y′, that is, (y, y′) ∈ R (here κyy′
is the label of the reaction y → y′). The steady states of the system correspond to
constant trajectories, that is, to the common zero set of the polynomials f1, . . . , fs ∈
R[x1, . . . , xs]. As the vector ẋ(t) lies for all time t in the linear subspace S spanned
by the reaction vectors {y′− y : y → y′ ∈ R} (which is known as the stoichiometric
subspace), it follows that any trajectory x(t) lies in a translate of S. Moreover,
if x(0) = x0 ∈ Rs

>0, then x(t) lies for any t (in the domain of definition) in the
stoichiometric compatibility class (x0 + S) ∩ Rs

>0. The linear equations of x0 + S
give conservation laws. If x0 ∈ Rs

>0, we can also write the linear variety x0 + S in
the form: {x ∈ Rs : `1(x) = c1, . . . , `d(x) = cd}, where `1, . . . , `d are linear forms
defining a basis of the subspace orthogonal to S and c = (c1, . . . , cd) ∈ Rd

≥0. These
constant values are called total conservation constants.

The network G is said to have the capacity for multistationarity if there exists
a choice of reaction rate constants κ and total conservation constants c such that
there are two or more steady states of system in the stoichiometric compatibility
class determined by c. In the first part of this work, we focus on the study of
multistationarity.

Multistationarity is a key property of biochemical reaction networks, because it
provides a mechanism for switching between different response states. This enables
multiple outcomes for cellular-decision making in cell signaling systems. Questions
about steady states in biochemical reaction networks under mass-action kinetics are
fundamentally questions about nonnegative real solutions to parametrized polyno-
mial ideals.

Starting with [19, 21], several papers studied the capacity for multistationarity
from the structure of the directed graph of reactions [2, 40, 42, 47, 67, 80, 86].
Once the capacity for multistationarity is determined, the following difficult step
is to find values of multistationary parameters as exhaustively and explicitly as
possible. This is a question of quantifier elimination in real algebraic geometry,
which is effective, but the inherent high complexity does not allow to treat interesting
networks with standard general tools. Several articles in the literature addressed this
question, with different approaches based on degree theory [12, 16], on algebraic and
analytic computations at steady state including perturbation techniques [108], on
sign conditions [63], on reduction to univariate polynomials [70] and on the study
of sparse real polynomials via Viro’s deformation techniques [51].

The first chapters of this thesis deal with the question of finding parameters that
give rise to multistationarity. We propose a general method to find open parameter
regions for networks which admit multiple steady states, based on the article by Bi-
han, Santos, and Spaenlehauer [7]. We apply this method to study several networks
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of biological relevance, such as sequential distributive multisite phosphorylation sys-
tems and enzymatic cascades. Some of the previous results that we mentioned above
allow to determine reaction rate constants where multistationarity occurs, but it is
not possible to directly give conditions on the total concentration constants. In our
results, we give conditions in both type of parameters: if the total concentrations
constants satisfy certain inequalities (with coefficients depending on some reaction
rate constants), then, we prove that there exist a choice on the remaining reaction
rate constants such that the network is multistationarity. This is a desirable con-
dition, since the total concentrations constants are experimentally more accessible
than the reaction rate constants. Also, in some cases we can give with this method
lower bounds on the number of positive steady states, and not only decide if the
network has more than one steady state in a same stoichiometric compatibility class.

In the last chapter, we focus on generalized polynomial systems (we allow real
exponents). In the context of chemical reaction networks, lower bounds of positive
roots guarantee the existence of positive steady states and there are several results
in the literature. However, there are few results on lower bounds of the number of
real or positive roots of polynomial systems (see [7, 93, 94, 107]). There are some
techniques used in the study of chemical reaction networks such as degree theory [12]
or sign conditions [80], that are used to decide if a network is monostationarity or
multistationarity. In Chapter 5 we apply some of these techniques and Gale duality,
to give sign conditions on the support and coefficients of a generalized polynomial
system that guarantee the existence of a positive real root.

Outline and contributions

In Chapter 1, we start by presenting some preliminaries on Chemical Reaction Net-
work Theory. We collect definitions from the literature and prepare the setting for
our results in the subsequent chapters. We present an important example of chem-
ical reaction network: the distributive multisite phosphorylation system, which is
widely studied and we will use as an example for our applications in the next chap-
ters. We introduce the notion of intermediate complexes in the framework of [42].
We also present a class of biological systems that describe Modifications of type
Enzyme-Substrate or Swap with Intermediates. These systems are called MESSI
systems and were introduced in [86].

Motivated by the problem of finding multistationary parameters, in Chapter 2 we
present a general framework to find coefficients for which a real sparse polynomial
system has more than one positive solution. As we said before, our approach is
based on the article by Bihan, Santos, and Spaenlehauer [7]. The basic idea we
develop is to detect in the convex hull of the support of the monomials that define
the equations, at least two simplices positively decorated (see Definition 2.2.10) that
form part of a regular subdivision. With this regularity condition we can extend the
positive real solutions of the corresponding subsystems to the total system. We also
present a mixed approach to the previous results, considering different supports for
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each polynomial. Our main results of this chapter are Theorems 2.2.13 and 2.3.3, in
which we describe open multistationarity regions in the space of all parameters. We
apply this method to find reaction rate constants and total conservation constants in
biochemical reaction networks of interest, for which the associated dynamical system
is multistationary, for example, the sequential distributive multisite phosphorylation
systems. These networks are a particular example of MESSI systems, introduced in
Chapter 1. We prove in Theorem 2.5.2 a general result for MESSI networks, that
is the key to apply the framework of Theorem 2.2.13 to describe multistationarity
regions for all these biological systems.

Based on the method developed in Chapter 2, we consider in Chapter 3 cascades
of enzymatic Goldbeter-Koshland loops [56] with any number n of layers, for which
there exist two layers involving the same phosphatase. We find regions in reaction
rate constant and total conservation constant space for which the associated mass-
action kinetics dynamical system is multistationary. Our main results of this chapter
are Theorems 3.2.1 and 3.2.3, in which we give conditions on the parameters to en-
sure multistationarity in this general case. Here, the associated polynomial systems
have positive dimensions growing linearly with n. The number of conservation laws
also grows linearly with n, and it is at least four if n ≥ 2.

In Chapter 4, we focus on the study of multistationarity in networks while as-
suming in the modeling the removal of some of the intermediates complexes; more
precisely we apply our results to the distributive sequential n-site phosphorylation
system. The removal of intermediates was introduced in [42], where the main prop-
erties are established. More specifically, the emergence of multistationarity of the
n-site phosphorylation system with less intermediates was studied in [90]. It is known
that the n-site phosphorylation network without any intermediates complexes has
only one steady state for any choice of parameters. In [90], the authors showed
which are the minimal sets of intermediates that give rise to a multistationarity
system, but they do not give information about how many positive steady states
can occur, and also, they do not describe the parameter regions for which these
subnetworks are multistationary. Wang and Sontag [108] showed that for certain
choices of the reaction rate constants and total conservation constants, the system
can have 2[n

2
] + 1 positive steady states. In this chapter, again based on the results

of Chapter 2, we give open parameter regions in the space of reaction rate constants
and total conservation constants that ensure these number of positive steady states,
while assuming in the modeling that roughly only 1

4
of the intermediates occur in the

reaction mechanism. In this framework of elimination of intermediates, we obtain a
general result built on results from [42], that allows to extend steady states of the
reduced network to the original network, under certain conditions in the reaction
rate constants.

Finally, in Chapter 5 we give conditions on the coefficients and the support of a
generalized polynomial system that guarantee the existence of at least one positive
real root. We obtain these conditions using degree theory and Gale duality. In
Theorem 5.2.7, we give a result from the Gale duality side. Then, we work with
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mixed dominating matrices (see [45, 46]) to obtain in Theorem 5.3.6 a sign result
which holds for certain type of supports. We also give geometric conditions on the
point configuration of the support and coefficients, in Theorem 5.4.8. When the
support does not satisfy the previous conditions, we work with the particular case
when the codimension is equal to 2. In the case that the exponents are integers, we
related the previous results with algebraic conditions studied in the literature, such
complete intersection lattice ideals.

Publications

The work presented in this thesis is based on articles done in collaboration with
various authors.

Chapter 2 is based on
Lower bounds for positive roots and regions of multistationarity in chemical re-

action networks. F. Bihan, A. Dickenstein, and M. Giaroli, 2018. Submitted. [6].

Chapter 3 is based on
Regions of multistationarity in cascades of Goldbeter-Koshland loops. M. Giaroli,

F. Bihan, and A. Dickenstein. Journal of Mathematical Biology, 78(4), 1115-1145,
2019. [54].

Chapter 4 is based on
Parameter regions that give rise to 2[n

2
] + 1 positive steady states in the n-site

phosphorylation system. M. Giaroli, R. Rischter, M. Pérez Millán, and A. Dicken-
stein, 2019. Submitted. [55]

Also, there are some results of this chapter that are part of the article in prepa-
ration Detecting the Multistationarity Structure in Enzymatic Networks, which is
joint work with M. Pérez Millán, R. Rischter, and A. Dickenstein.

Chapter 5 is based on
Sign conditions for the existence of at least one positive solution of a sparse

polynomial system. F. Bihan, A. Dickenstein, and M. Giaroli. In preparation.
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Chapter 1

Background on Chemical Reaction
Network Theory

In this chapter, we give a brief introduction on Chemical Reaction Network Theory
(CRNT). We present the basic concepts and the notation that we will use in the
following chapters.

We refer the reader to the seminal works of Feinberg and Horn and Jackson
[32, 66], and to the work of Gunawerdena [58] for further references on CRNT.

1.1 Chemical Reaction Networks

First, we present a basic example of how a chemical reaction network gives rise to a
dynamical system.

A+B → C (1.1.1)

This is an example of a chemical reaction. In this reaction, species A and B react
to form species C. The reactant A+B and the product C are called complexes.

When reaction (1.1.1) takes place, a molecule of A and a molecule of B are
transformed into a molecule of C. If we denote by nA, nB, and nC the number of
molecules of species A, B and C respectively before the reaction occurs, then the
number of molecules after the reaction are nA−1, nB−1, and nC+1. More reactions
involving the same species can appear. A set of reactions involving certain species is
a chemical reaction network. For example, consider the chemical reaction network
with reaction (1.1.1) and the additional reaction 2C → B:

A+B
κ1−→ C, 2C

κ2−→ B (1.1.2)

Here the reactions are represented together with a label. The label of a reaction
indicates how fast or often the reaction occurs and is called reaction rate constant.
It is always a positive value.

If the number of molecules of the species are large enough, is reasonable use
concentrations, that is, number of molecules divided by the volume, as measure
of species abundance. The concentrations of the three species of network (1.1.2),

7



8 CHAPTER 1. CHEMICAL REACTION NETWORK THEORY

denoted by xA, xB, and xC , will change in time as the reactions of the network occurs.
Under the assumption of mass-action kinetics, in each reaction species react at a
rate proportional to the product of their concentrations, where the proportionality
constant is the reaction rate constant. From the network (1.1.2), we obtain the
following differential equations:

d

dt
xA = ẋA = −κ1xAxB,

d

dt
xB = ẋB = −κ1xAxB + κ2x

2
C ,

d

dt
xC = ẋC = κ1xAxB − 2κ2x

2
C .

In this example, we observe that ẋA− 2ẋB − ẋC = 0. Then, xA− 2xB −xC = c1,
where c1 is a constant which depends on the initial conditions (c1 = xA(0)−2xB(0)−
xC(0)). That is, the concentration vector (xA(t), xB(t), xC(t)) is contained in the
affine variety L = {(x, y, z) ∈ R3 : x− 2y − z = c1}. The subspace S = {(x, y, z) ∈
R3 : x− 2y − z = 0} is called the stoichiometric subspace of the network.

A chemical reaction network G on a given set S of chemical species is a finite
directed graph whose edges R represent the reactions and whose vertices represent
the complexes, usually represented as nonnegative integer linear combinations of
species. After numbering the species, a complex can be identified with a vector in
Zs≥0, where s denotes the cardinality of S .

The vertex i of G represents the i-th complex, and we associated to it the mono-
mial

xyi = x
(yi)1

1 x
(yi)2

2 · · ·x(yi)s
s .

In other words, if the i-th complex is of the form (yi)1A + (yi)2B + · · · , the corre-

sponding monomial is xyi = x
(yi)1

A x
(yi)2

B · · · .
For example, in the reaction (1.1.1), to the complex A + B we associated the

monomial xAxB, which determines the vector y1 = (1, 1, 0) and to the complex C
we associated the monomial xC , which determines the vector y2 = (0, 0, 1). We will
refer y1, . . . , yn as the complexes in the network.

A chemical reaction network, then, consists of three sets:

• A finite set of species S = {X1, X2, . . . , Xs}.

• A finite set of vectors C = {y1, y2, . . . , yn}, with yi ∈ Zs≥0, which represent the
complexes of the network. They must satisfy that for each species Xi ∈ S ,
there exists a complex y ∈ C in which the species Xi “appears”, that is, there
are no superfluous species in S .

• A set of reactions R ⊂ C × C , which satisfy:

– (y, y) /∈ R for all y ∈ C , that is, no complex reacts to itself.

– For each complex y ∈ C , there exists y′ ∈ C such that (y, y′) ∈ R or
(y′, y) ∈ R, that is, there exists a reaction in R such that y is the reactant
or the product complex.
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Here (y, y′) ∈ R indicates that the complex y reacts to the complex y′; in
general we will write y → y′.

We denote G = {S ,C ,R} to a chemical reaction network G with species set
S , complex set C and reaction set R.

1.1.1 Chemical reaction systems

The concentration vector

x = x(t) = (x1(t), x2(t), . . . , xs(t)),

represents the concentration xi(t) of the specie Xi at time t. As we saw at the
beginning of this chapter, a chemical reaction network defines a dynamical system
that arises from a rate formation function for each reaction. That is, to each reaction
y → y′ we assign a nonnegative real valued continuous function, Kyy′(.) = Ky→y′(.),
where Kyy′(x) represents the instantaneous occurrence rate of reaction y → y′ when
the instantaneous concentration of the species is given by the vector x.

The support of a vector v ∈ Rm is defined as the set of its nonzero coordinates,
and we denote it by supp(v).

Definition 1.1.1. A kinetics K for a chemical reaction network G = {S ,C ,R}
is an assignment to each reaction y → y′ ∈ R of a continuous rate function
Kyy′(.) : Rs

≥0 → R≥0, such that

Kyy′(x) > 0 if and only if supp(y) ⊆ supp(x).

Now, we introduce the definition of a chemical reaction system.

Definition 1.1.2. A chemical reaction system G = {S ,C ,R,K} is a chemical
reaction network G = {S ,C ,R} endowed with a kinetics K.

Given a chemical reaction system G = {S ,C ,R,K}, we have the following
associated dynamical system:

ẋ(t) = f(x(t)) :=
∑

y→y′∈R

Kyy′(x(t))(y′ − y). (1.1.3)

The function f is called the species formation rate function. We observe that for
each species Xi, fi(x) gives the instantaneous rate of generation of the species Xi

due to the simultaneous occurrence of all reactions in R. We have that

ẋi(t) = fi(x(t)) =
∑

y→y′∈R

Kyy′(x(t))((y′)i − (y)i),

then fi(x) is obtained by adding all the rate formation functions, each one multiplied
by the net number of molecules of Xi produced in the corresponding reaction.
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1.1.2 Mass-action kinetics systems

In this thesis, we will study chemical reaction networks endowed with mass-action
kinetics, an important example of kinetics. The Law of Mass Action was proposed
by two Norwegians: Peter Waage (1833-1900), a chemist, and Cato Guldberg (1836-
1902), a mathematician, in an article published in Norwegian in 1864. Mass-action
kinetics is based on the idea that the rate of a reaction is proportional to the product
of the concentrations of the species in the reactant complexes, if the molecules are
homogeneously distributed and in abundance. The precise definition is the following:

Definition 1.1.3. The kinetics of a chemical reaction system is mass-action if all
the rate formation functions Kyy′ are of the form:

Kyy′(x) := κyy′x
y = κyy′x

y1

1 x
y2

2 . . . xyss ,

for a certain positive vector of reaction rate constants κ = (κyy′) ∈ R|R|>0 , with the
convention 00 = 1.

By (1.1.3), the species formation rate function of a chemical reaction system
with mass-action kinetics is the following:

f(x(t)) := ẋ(t) =
∑

y→y∈R

κyy′x(t)y(y′ − y). (1.1.4)

Note that f1, . . . , fs ∈ R[x1, . . . , xs].
The non-negative orthant Rs

≥0 is forward invariant with respect to the mass-
action system (1.1.4) (see [92]), that is, if the initial condition x(0) belongs to
Rs
≥0, then so does the trajectory x(t) for any positive time t. The same holds

for the positive orthant Rs
>0. Then, mass-action systems behave as expected in the

chemical reaction networks modeling: no coordinate of the concentration vector will
never become negative.

Example 1.1.4. Consider the T-cell signal transduction model proposed by the
immunologist McKeithan [78]. T-cell receptors bind to both self-antigens and foreign
antigens and this model give a possible explanation of how T-cells can recognize self
versus foreign antigens. A mathematical analysis of this network was done by Sontag
in [92]. In its simplest case, the reaction network is the following:

A+B
κ12

##
D

κ31

;;

Cκ23

oo
κ21

cc

A denotes the T-cell receptor protein, B denotes the Major Histocompatibility
protein Complex (MHC) of antigen-presenting cell, C denotes the species A bound
to species B, and D denotes an activated form of C. The binding of A and B forms
C, which undergoes a modification into its activated form D before transmitting a
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signal. The general mechanism proposed by McKeithan includes several activated
forms of C, until a final active form that triggers the attack to the foreign antigen
is obtained.

In this example, the network has 4 reactions, 4 species: A, B, C, and D, and 3
complexes: A + B, C, and D. The differential equations for the concentrations of
the species in the network endowed with mass-action kinetics is the following:

dx

dt
=


dxA
dt
...

dxD
dt

 = κ12xAxB


−1
−1

1
0

+κ21xC


1
1
−1

0

+κ23xC


0
0
−1

1

+κ31xD


1
1
0
−1

 .

That is,
dxA
dt

= −κ12xAxB + κ21xC + κ31xD,

dxB
dt

= −κ12xAxB + κ21xC + κ31xD,

dxC
dt

= κ12xAxB − κ21xC − κ23xC ,

dxD
dt

= κ23xC − κ31xD.

1.1.3 Stoichiometric compatibility class

The fundamental idea here is that, regardless of the kinetics, the structure of the re-
action alone imposes restrictions on the trajectories. In particular, a trajectory that
passes through x ∈ Rs

≥0 can eventually reach x′ ∈ Rs
≥0 only if x and x′ are compatible

with certain “stoichiometrical” conditions the reaction network imposes. For exam-
ple, for the network (1.1.2), we observed that the trajectories (xA(t), xB(t), xC(t))
were contained in an affine variety.

Definition 1.1.5. The stoichiometric subspace of the chemical reaction network
G = {S ,C ,R} is the linear subspace spanned by the reaction vectors y′ − y if
y → y′ ∈ R. We denote this subspace by S:

S := 〈y′ − y : y → y′ ∈ R〉 ⊂ Rs.

We compute the stoichiometric subspace S for the network of Example 1.1.4. In
this case, the complexes are: y1 = (1, 1, 0, 0), y2 = (0, 0, 1, 0), y3 = (0, 0, 0, 1). The
reactions that occur are: y1 → y2, y2 → y1, y2 → y3, y3 → y1. Then:

S = 〈(−1,−1, 1, 0), (1, 1,−1, 0), (0, 0,−1, 1), (1, 1, 0,−1)〉.

So, we obtain: S = 〈(1, 1,−1, 0), (0, 0,−1, 1)〉.
In the network (1.1.2), we observed that the trajectory x(t) = (xA(t), xB(t), xC(t)),

which starts in x(0) = (xA(0), xB(0), xC(0)) ∈ R3
>0, remains in S + x(0). In fact, we

see that integrating (1.1.3) yields:

x(t) = x(0) +
∑

y→y′∈R

(∫ t

0

Kyy′(x(s))ds

)
(y′ − y).
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Therefore, a trajectory x(t), beginning at a positive vector x(0) = x0 ∈ Rs
>0, remains

in S + x0 for all t ≥ 0. Recall also that the non-negative orthant Rs
≥0 is forward-

invariant with respect to the dynamics (1.1.4). This facts leads to the following
definition:

Definition 1.1.6. Let G = {S ,C ,R} be a chemical reaction network and let S be
its stoichiometric subspace. For each x0 ∈ Rs

>0 we define a stoichiometric compati-
bility class:

Sx0 := (x0 + S) ∩ Rs
>0

We say that x, x′ ∈ Rs
≥0 are stoichiometrically compatible if they are in the same

stoichiometric compatibility class, that is, if x− x′ ∈ S.

With mass-action kinetics, any stoichiometric compatibility class is also forward-
invariant with respect to the system (1.1.4).

If d = s− dim(S) and x0 ∈ Rs
>0, we can also write Sx0 in the form:

Sx0 = {x ∈ Rs : `1(x) = c1, . . . , `d(x) = cd},

where `1, . . . , `d are linear forms defining a basis of the subspace orthogonal to S and
c = (c1, . . . , cd) ∈ Rd. These constant values are called total conservation constants.
The linear equations that define x(0)+S are called conservation laws or conservation
relations.

A conservation-law matrix of G, denoted by W , is any row-reduced d× s-matrix
whose rows form a basis of S⊥. Note that Wẋ = Wf(x) = 0, with f the rate
formation function. Sometimes we will use the notation Sc to refer the compatibility
class with respect to the total conservation vector c = Wx0, that is,

Sc := {x ∈ Rs
≥0 : Wx = Wx0 = c} = Sx0 .

In Example 1.1.4, x, x′ ∈ R4
≥0 are stoichiometrically compatible if x − x′ ∈ S =

〈(1, 1,−1, 0), (0, 0,−1, 1)〉. Moreover, if we have an initial condition x(0) = x0, then
the trajectory x(t) is contained in S + x0.

Example 1.1.7. Consider the simple network

2A
κ1 // B
κ2

oo (1.1.5)

The stoichiometric subspace is S = 〈(2,−1)〉, and the stoichiometric compatibility
classes are of the form (〈(2,−1)〉 + x0) ∩ R2

≥0 and are depicted in Figure 1.1. The
equation xA + 2xB = c is a conservation law for the network.
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Stoichiometric compatibility classes

xA
Stoichiometric subspace

xB

Figure 1.1: Stoichiometric compatibility classes for network (1.1.5).

1.1.4 Steady states and multistationarity

A steady state of a chemical reaction system is a nonnegative concentration vector
at which the species formation rate function takes the value zero. Formally:

Definition 1.1.8. A concentration vector x̄ ∈ Rs
≥0 is a steady state of a chemical

reaction system if f(x̄) = 0, with f the species formation rate function (1.1.3), and
x̄ is a positive steady state if is a steady state and x̄ ∈ Rs

>0.

For chemical reaction networks with mass-action kinetics, the steady states of
the system (1.1.4) are the nonnegative real zeros of f1, . . . , fs ∈ R[x1, . . . , xs], that
is, the elements of the steady state variety :

V (f) = {x ∈ Rs
≥0 : f1(x) = · · · = fs(x) = 0}.

Some reaction systems, taken with mass-action kinetics, admit no positive steady
states for some or even for any choices of the rate constants. For example, in
network (1.1.2), from the differential equation corresponding to the concentration
xA, any steady state satisfy:

κ1xAxB = 0.

Then, the network does not admit positive steady states for any positive choice of
the constant κ1. In this case, the steady states are characterized by the extinction
of some species.

On the other hand, the network (1.1.5), with mass-action kinetics, admits one
positive steady state in each positive stoichiometric compatibility class, regardless
of the values that the reaction rate constants take.

The existence or nonexistence of positive steady states can be easy to decide for
simple networks like the previous one, but this is not true for complicated networks.
One have to deal with a large system of polynomial equations in many variables
(species concentrations) in which many parameters (reaction rate constants) appear.

A question of interest is if a chemical reaction system with mass-action kinetics
admit multiple steady states in a fixed stoichiometric compatibility class.
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Definition 1.1.9. Let G chemical reaction system with mass-action kinetics, and
fixed reaction rate constants κ. We say that the system exhibits multistationarity
if there are at least two positive steady states in some stoichiometrically compati-
bility class. In case there is a single positive steady state in each stoichiometrically
compatibility class, we say instead that the system is monostationary.

We say that a chemical reaction network G is multistationary (or that it has the
capacity for multistationarity) if there exists a choice of reaction rate constants such
that the mass-action system exhibits multistationarity.

Figure 1.2 illustrates the intersection of the steady state variety V (f) for certain
chemical reaction system, with different stoichiometric compatibility classes. In one
of them there are 3 different positive steady states x(1), x(2) and x(3). Then, the
system admits multistationarity.

V(f)

b

b

b

x(3)
x(2)

x(1)

Figure 1.2: An example of a steady state variety cut out by different stoichiometri-
cally compatibility classes.

A unique positive (stable) steady state can underlie robustness in the correspond-
ing biological system; on the other hand, the existence of multiple positive (stable)
steady states can explain switching behavior in the system. Multistationarity is
linked to cellular decision making [72, 83, 109] and there is evidence suggesting that
different steady states of a cell represent different cell types [44, 101].

There are several methods for deciding whether a chemical reaction network
taken with mass-action kinetics have the capacity for multistationarity, that can ei-
ther preclude or guarantee multistationarity for certain classes of networks. For
instance, the are criteria based on injectivity [1, 19, 37, 80] and deficiency re-
sults [29, 33, 36]. These last criteria based on deficiency (which is an important
invariant of the graph structure of the network) are implemented in a free software
called CRNToolbox [28]. There are also criteria to preclude or guarantee multista-
tionarity when the positive steady states can be described by binomials, for exam-
ple [87, 86]. Another tool for studying multistationarity are the results for assessing
multistationarity of one network from another, in general these results “lift” steady
states of a small subnetwork to a bigger one [2, 14, 20, 42, 67]. For more details
about methods for deciding the capacity for multistationarity of a network see [68].

Once we know that a network is multistationary, the next step is to finding pa-
rameter region where the network has more than one positive steady state. This is a
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problem of quantifier elimination in real algebraic geometry. For instance, a decom-
position of the parameter space into regions with different numbers of steady states
could be done using Cylindrical Algebraic Decomposition [10], but this method is
very limited, since the models have usually a large number of variables and pa-
rameters. As we mention in the Introduction, there are other approaches based on
degree theory [12, 16], on perturbation techniques [108], on sign conditions [63], on
reduction to univariate polynomials [70] and on the study of sparse real polynomials
via Viro’s deformation techniques [51]. In the first chapters of this thesis we will
deal with this question.

1.2 The distributive multisite phosphorylation sys-

tem

In this section, we introduce an important example: the distributive multisite phos-
phorylation system, which is widely studied in the literature and we will use as an
example for our applications in the next chapters.

Phosphorylation/dephosphorylation are post-translational modification of pro-
teins mediated by enzymes, particular proteins that add or take off a phosphate
group at a specific site, inducing a conformational change that allows/prevents the
protein to perform its function. The standard building block in cell signaling is the
following enzyme mechanism, which is called a Michaelis-Menten mechanism.

S0 + E
kon−→
←−
koff

ES0
kcat→ S1 + E (1.2.1)

This basic network involves four species: the substrate S0, the phosphorylated sub-
strate S1, the enzyme E, called kinase, and the intermediate species ES0, and 3 re-
actions, with reaction constants called kon, koff , kcat. The enzyme E is not consumed
after the whole mechanism, which is assumed to be with mass-action kinetics. The
concentration of the donor of the phosphate group is considered to be constant, thus
hidden in the reaction constants and ignored. This mechanism with 4 species, 3 com-
plexes, and 3 reactions is usually represented by the scheme depicted in Figure 1.3.

S0 S1.

E

Figure 1.3: Shorthand for the network (1.2.1).

The addition of phosphate groups to multiple sites of a single molecule, may be
distributive or processive. Distributive systems require an enzyme and substrate to
bind several times in order to add/remove multiple phosphate groups. Processive
systems require only one binding to add/remove all phosphate groups and it was
shown in [17] that such systems cannot admit more than one steady state in each
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stoichiometric compatibility class. The distibutive multisite phosphorylation system
describes the n-site phosphorylation of a protein by a kinase/phosphatase pair in a
sequential and distributive mechanism and it is known that it has the capacity of
multistationarity for any n ≥ 2 [108].

The reaction mechanism for the sequential distributive mechanism for the n-site
network is a sequence of reactions as in (1.2.1), where we append n subgraphs of
the form:

Si + E
koni−→
←−
koffi

ESi
kcati→ Si+1 + E, i = 0, . . . , n− 1,

and, on the other side, n subgraphs of the form:

Si + F
`oni−1−→
←−
`offi−1

FSi
`cati−1→ Si−1 + F, i = 1, . . . , n,

where F denotes another enzyme called phosphatase, to obtain the network:

S0 + E
kon0−→
←−
koff0

ES0

kcat0→ S1 + E · · · →Sn−1 + E
konn−1−→
←−

koffn−1

ESn−1

kcatn−1→ Sn + E

Sn + F
`onn−1−→
←−

`offn−1

FSn
`catn−1→ Sn−1 + F · · · →S1 + F

`on0−→
←−
`off0

FS1

`cat0→ S0 + F

(1.2.2)

It represents one substrate that can sequentially acquire up to n phosphate groups,
via the action of the kinase E, and which can be sequentially released via the
action of the phosphatase F , in both cases via an intermediate species formed by
the interaction of the substrate and the enzyme. The kinetics of this network is
deduced by applying the law of mass action to this explicit labeled digraph. There
are 3n+ 3 species: the substrate species S0, S1,. . . ,Sn, the enzyme species E and F ,
and the intermediate species ES0, ES1, . . . , ESn−1, FS1, FS2, . . . , FSn. We denote
by s0, s1, . . . , sn, e, f , y0, y1, . . . , yn−1, u0, u1, . . . , un−1 the concentration of the
species S0, S1,. . . ,Sn, E, F , ES0, ES1, . . . , ESn−1, FS1, FS2, . . . , FSn respectively.
The associated dynamical system that arises under mass-action kinetics equals:

ds0

dt
= −kon0s0e+ koff0y0 + `cat0u0, (1.2.3)

dsi
dt

= kcati−1yi−1 − konisie+ koffi
yi + `catiui − `oni−1sif + `offi−1

ui−1, i = 1, . . . , n− 1,

dsn
dt

= kcatn−1yn−1 − `onn−1snf + `offn−1un−1,

dyi
dt

= konisie− (koffi
+ kcati)yi, i = 0, . . . , n− 1,

dui
dt

= `onisi+1f − (`offi
+ `cati)ui, i = 0, . . . , n− 1,

de

dt
= −

n−1∑
i=0

dyi
dt
,
df

dt
= −

n−1∑
i=0

dui
dt
.
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There are three linearly independent conservation laws for any value of n (and
no more):

n∑
i=0

si +

n−1∑
i=0

yi +

n−1∑
i=0

ui = Stot, e+

n−1∑
i=0

yi = Etot, f +

n−1∑
i=0

ui = Ftot, (1.2.4)

where clearly the total amounts Stot, Etot, Ftot are positive for any trajectory of the
dynamical system starting in the positive orthant.

In Section 2.4 and in Chapter 4 we will study these systems.

1.3 Intermediates

Typically, intermediate species are complexes such as a enzyme-substrate complex.
Intermediate species in biochemical reaction networks are often ignored in the mod-
eling, for simplicity or because of lack of knowledge. For instance, the model of the
multisite phosphorylation systems presented in the previous section vary consider-
ably in terms of intermediates. In the network (1.2.2) we assume in the modeling
that there are 2n intermediates, but there are models with less intermediates. The
n-site phosphorylation system without any intermediates species has only one steady
state for any choice of parameters, however there exists parameters such that the
network (1.2.2) admits multiple steady states. So, it is important to compare the
dynamical properties of models that differ in the intermediates that are included. In
this section, we present the framework introduced by Feliu and Wiuf in [42] to study
the removal of intermediates in chemical reaction networks, and the main properties.

Let G be a chemical reaction network with set of species SG, of cardinality s.
Consider a fixed subset of intermediate species I = {U1, U2, . . . , Up} ⊂ S , and we
denote SG \ I = {X1, . . . , Xn}. The intermediate species of I fulfill:

• For every Ui ∈ I, the only complex that involves Ui is Ui (intermediate com-
plex).

We say that complex y reacts to complex y′ via intermediates of I if either y → y′

or there exists a path of reactions from y to y′ only through intermediate complexes
of I. This is denoted by y →◦ y′. Intermediate complexes must also fulfill:

• For every Ui ∈ I, there is a sequence of reactions y →◦ Ui →◦ y′, with y, y′

complexes that only involve species in SG \ I.

We consider now the network G′ which is obtained from G by removing the
intermediate species in I. The set of species of G′ is SG′ = SG \ I; the complexes
of G′, CG′ , are the complexes of G which are not an intermediate complex Ui, for
i = 1, . . . , p; and the set of reactions of G′, RG′ , is obtained from the set of reactions
of G collapsing the sequences y →◦ y′, to the reaction y → y′, where y, y′ are
complexes only involving species in SG′ .
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Example 1.3.1. Consider the network G, with nonintermediate complexes y1,y2

and y3, and with U the only intermediate complex:

y2

��
U

OO

��
y1

??

y3

Then, the following network:

y2

  
y1

>>

// y3

is obtained from G removing the intermediate species U .

We recall some results and properties from [42]. In what follows, let G a chemical
reaction network with set of species SG = {X1, . . . , Xn, U1, . . . , Up} and a fixed
subset of intermediates species I = {U1, . . . , Up}. Consider G′ the network obtained
from G by removing the intermediate species in I.

Conservation laws (Theorem 1 in [42]): The conservation laws in G′ are in one-
to-one correspondence with the conservation laws in G.

We show, following Lemma 1 in the ESM of [42], more explicitly this correspon-
dence. We first note that the definition of the intermediate complexes impose that
the network G′ obtained from a network G by removing the intermediate complexes
in I, have both the same number of connected components. Let S and S ′ be the sto-
ichiometric subspaces of G and G′, respectively, and J be the number of connected
components of G and G′. Let w ∈ S ′⊥ and, for each connected component of G′

choose a complex yj in that connected component. Define aj = 〈w, yj〉, j = 1, . . . , J
and the vector w̄ ∈ Rn+p as follows: w̄i = wi for i = 1, . . . , n, and w̄n+k = aj if
Uk is in the j-th component for k = 1, . . . , p, where 〈, 〉 denotes the canonical inner
product of Rn.

Then, if {w1, . . . , wd} is a basis of S ′⊥, the set {w̄1, . . . , w̄d} is a basis of S⊥.
This is, if the conservation laws of G′ are

`i(x) = 〈wi, x〉 = ci, (1.3.1)

where ci ∈ R, for 1 ≤ i ≤ d, then the conservations laws for G are

¯̀
i(x, u) = `i(x) +

J∑
j=1

∑
Uk in the

j−th conn.comp.

〈wi, yj〉uk = c̄i, (1.3.2)

with c̄i ∈ R, for 1 ≤ i ≤ d.
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Consider G with mass-action kinetics and reaction rate constants κ. The follow-
ing result gives an expression of the concentration of the intermediates at the steady
state in terms of the reaction rate constants κ and the concentration of the species
in SG \ I.

Concentration of intermediates at steady state (Theorem 2 in [42]): The
system of differential equations u̇i = 0, for all intermediates Ui, i = 1, . . . , p, is
linear on the u′s, and the concentration ui at steady state has a unique solution,
given by

ui =
∑
y∈CG′

µi,y(κ)xy, (1.3.3)

where µi,y(κ) is a nonnegative rational function on the reaction rate constants κ.
Further µi,y 6= 0 if and only if y →◦ Ui. In this case, the numerator and the
denominator of µi,y are homogeneous polynomials in κ of degree p; the denominator
involves only rate constants for reactions whose source is an intermediate of I and the
numerator also involves rate constants for reactions whose source is an intermediate
of I, except for one factor in each summand, which comes from a reaction whose
source is the complex y, with target one intermediate complex of I.

The next result says that if we substitute the previous expressions of the concen-
tration of the intermediates in I into the differential equations of the mass action
system associated to G, we obtain a mass-action system for the reduced network G′.

Mass-action system for G′ (Theorem 3 in [42]): After replacing the expressions
ui =

∑
y∈CG′

µi,y(κ)xy into the differential equations ẋi of G, we obtain a dynamical

system associated to the network G′ with mass-action kinetics, with reaction rate
constants τ(κ) = (τyy′(κ)) depending on the reaction rate constants κ of G. In
particular, the reaction constants τyy′(κ) are given by rational functions of κ, with
positive coefficients:

τyy′(κ) = κyy′ +

p∑
j=1

κUjy′µj,y(κ), (1.3.4)

where κyy′ ≥ 0 is positive when y
κyy′−→ y′ in G (and κyy′ = 0 otherwise), and κUjy′ is

positive if Uj
κUjy′−→ y′ in G (and κUjy′ otherwise), where µj,y is in (1.3.3).

Example 1.3.2. Consider the reaction network G given by the following digraph:

y2

κ3 ��
U1

κ4

OO

κ5

��
y1

κ1
??

κ2 ��

U3
κ7 // y3

U2

κ6

??
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Then, the network G′ obtained by removing the intermediates from the set I =
{U1, U2, U3} is the following reaction network:

y2
τ2

  
y1

τ1
>>

τ3 // y3

Using (1.3.4), we can express the reaction rate constants τ in terms of the reaction
rate constants κ. For example, we have that τ1 = κ3µ1,y1(κ). In the proof of
Theorem 2 of [42] it is shown how to obtain µ1,y1 from a graphical procedure, using
the Matrix-Tree theorem (see [79, 104]). Here we explain how to do it in this
example. Consider the digraph with node set I ∪ {∗} and labeled edges as follows:

U1
κ5

��
κ1

��
∗

κ3

??

κ2 ��

U3κ7

oo

U2

κ6

??

Recall that a spanning tree of a digraph is a subgraph that contains all the vertices,
is connected and acyclic as an undirected graph. An i-tree of a graph is a spanning
tree where the vertex i is its unique sink (that is, the only node with outdegree
zero). Then, µ1,y1 = ρ1

ρ∗
, where

ρ1 =
∑

T an U1− tree

π(T ), and ρ∗ =
∑

T an ∗− tree

π(T ),

where π(T ) is the product of the labels of all the edges of T . From the graph we
can check that: µ1,y1(κ) = ρ1

ρ∗
= κ1κ6κ7

κ3κ6κ7+κ5κ6κ7
= κ1

κ3+κ5
.

1.4 MESSI systems

In [86], Dickenstein and Pérez Millán introduced a general framework for biolog-
ical systems, called MESSI systems, that describe Modifications of type Enzyme-
Substrate or Swap with Intermediates. Distributive multisite phosphorylation sys-
tems and enzymatic cascades with any number of layers which occur in cell signaling
pathways, and we will study in detail in Chapter 4, are examples of MESSI systems
of biological significance. In particular they are examples of s-toric MESSI systems,
an important subclass of MESSI systems. The authors proved in [86] that any s-
toric MESSI system is toric, that is, the positive steady states can be described
with binomials and under certain hypotheses, they can choose explicit binomials
with coefficients in Q(κ) which describe the positive steady states. Moreover, under
certain combinatorial conditions, they describe a basis of conservation laws for these
systems.
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In this section, we briefly introduce the basic definitions of MESSI systems. For
a more detailed explanation, see [86].

A MESSI network is a chemical reaction network, for which exists a partition of
the set of species S into disjoint subsets:

S = S (0)
⊔

S (1)
⊔

S (2)
⊔
· · ·
⊔

S (m), (1.4.1)

where m ≥ 1 and
⊔

denotes disjoint union. Species in S (0) are called intermediate
and species in S1 := S \S (0) are called core, with #S (0) = p and #S1 = s−p > 0.
As before, we denote the species with upper letters and the concentration of the
species with small letters, for example xj denotes the concentration of the species
Xj.

There are two types of complexes allowed in a MESSI network: intermediate
complexes and core complexes. The intermediate complexes are complexes that
consist of a unique intermediate species that only appears in that complex. The core
complexes are mono or bimolecular and consist of either one or two core species.
When a core complex consists of two species Xi, Xj, they must belong to different
sets S (α),S (β) with α 6= β, α, β ≥ 1.

Recall from the previous section, that a complex y reacts to a complex y′ via
intermediates (and we note it y →◦ y′) if either y → y′ or there exists a path of
reactions from y to y′ only through intermediate complexes. Another condition in
the intermediate complexes is that for every intermediate complex y, there must exist
core complexes y1 and y2 such that y1 →◦ y and y →◦ y2. The reactions in a MESSI
network satisfy the following rules: if three species are related by Xi +Xj →◦ Xk or
Xk →◦ Xi+Xj, then Xk is an intermediate species. If two monomolecular complexes
consisting of a single core species Xi, Xj are related by Xi →◦ Xj, then there exists
α ≥ 1 such that both belong to S (α). And if Xi +Xj →◦ Xk +X` then, there exist
α 6= β such that Xi, Xk ∈ S (α), Xj, X` ∈ S (β) or Xi, X` ∈ S (α), Xj, Xk ∈ S (β).

A partition in the set of species that satisfies all the previous conditions in the
complexes and reactions defines a MESSI structure.

Remark 1.4.1. Note that in the framework of [42] presented in Section 1.3, we can
consider subsets of intermediates and nonintermediate species that do not satisfy
the rules of the MESSI systems. For instance, in the n-site phosporylation sys-
tem (1.2.2), a subset I of intermediates may include or not the species ES0. But by
the rules that satisfy the reactions in a MESSI system, any partition in the set of
species that define a MESSI structure of network (1.2.2) must satisfy ES0 ∈ S (0).

There can be many possible partitions that define a MESSI structure of a fixed
network. If we have two partitions S = S (0) t S (1) t S (2) t · · · t S (m) and
S = S ′(0) tS ′(1) tS ′(2) t · · · tS ′(m′), we say that the first partition refines the
second one if and only if S (0) ⊇ S ′(0) and for any α ≥ 1, there exists α′ ≥ 1 such
that S (α) ⊆ S ′(α′). This defines a partial order in the set of all possible partitions,
and in particular we have the notion of a minimal partition.
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Example 1.4.2. In Section 1.3 we presented the distributive multisite phosphory-
lation systems. The following network is an example of a mixed phosphorylation
mechanism (partially distributive, partially processive) studied in [98]. The reaction
network is as follows:

S0 + E
k1−→
←−
k2

ES0
k3→ S1 + E

k4−→
←−
k5

ES1
k6→ S2 + E

S2 + F
k7−→
←−
k8

FS2
k9→ FS1

k10→ S0 + F

A MESSI structure of the network is given by the following minimal partition of
the species: S (0) = {ES0, ES1, FS1, FS2} (the intermediate species), S (1) = {E},
S (2) = {F}, and S (3) = {S0, S1, S2}. We will use this partition in the next examples
featuring this network. Another example of a partition giving a MESSI structure,
which is not minimal, is the following: S ′(0) = {ES0, ES1, FS1, FS2}, S ′(1) =

{E,F}, and S ′(2) = {S0, S1, S2}.

We now present three digraphs associated to a MESSI network with digraph G.
First, we introduce the associated digraph G1, where the intermediate species are
eliminated, that is, with set of species S1. We associated to this set the inherited
partition

S1 = S (1)
⊔

S (2)
⊔
· · ·
⊔

S (m). (1.4.2)

The vertex set of G1 consists of all the core complexes. An edge y → y′, with y, y′

core complexes, belongs to the edge set of G1 if and only if y →◦ y′ in G. If the
edge labels of G are the reaction rate constants κ, then the labels of G1, called τ ,
are rational functions in the reaction rate constans κ. We already described these
explicit rate constants τ of the edges of G1 in (1.3.4) (here we take I = S (0) and
G1 is equal to G′).

We next introduce a labeled associated multidigraph G2 where we “hide” the
concentrations of some of the species in the labels. We keep all monomolecular
reactions Xi → Xj in G1 and for each reaction Xi + X`

τ−→ Xj + Xm in G1,

with Xi, Xj ∈ S (α), X`, Xm ∈ S (β), we consider two reactions Xi
τx`−→ Xj and

X`
τxi−→ Xm. In principle this multidigraph MG2 might contain loops or parallel

edges between any pair of nodes. We obtain the digraph G2 by collapsing into one
edge all parallel edges of MG2. The label of an edge in G2 is the sum of the labels
of the parallel edges in the multidigraph. By the rules of the reactions in a MESSI
network, G2 is a linear graph (each node is indicated by a single variable) and the
labels on the edges depend on the rate constants but might also depend on the
concentrations of some species. We call G◦2 the digraph obtained from the deletion
of loops and isolated nodes of G2. It can be shown (see Lemma 18 of [86]) that if
the partition associated to a MESSI system is minimal, the connected components
of the associated digraph G2 are in bijection with the subsets S (α) corresponding
to a core species and the set of nodes of the corresponding component equals S (α).

Finally, given a MESSI system with a minimal partition of the set of species, we
define the associated digraph GE, whose vertices are the sets S (α) for α ≥ 1, and
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S0 + E
τ1→ S1 + E

τ2→ S2 + E

S2 + F
τ3→ S0 + F

G1

S0 S1 S2

E F

eτ1 eτ2

fτ3

G2

S (1) S (3)

S (2)

GE

Figure 1.4: The digraphs G1, G2, and GE of the network in Example 1.4.2.

there is an edge from S (α) to S (β) if there is a species in S (α) in a label of an edge
in G◦2 between species of S (β).

Example 1.4.3 (Example 1.4.2, continued). The digraphs G1, G2, and GE associ-
ated to the network of Example 1.4.2 are depicted in Figure 1.4.

Now, we give the definition of an s-toric MESSI. Recall that an i-tree of a
graph is a spanning tree where the i-th vertex is its unique sink. Given an i-tree
T , we call cT the product of the labels of all the edges of T . An s-toric MESSI
system is a MESSI system that also satisfies the following conditions: i) for any
intermediate complex y, there exists a unique core complex y1 such that y1 →◦ y,
ii) the associated multidigraph MG2 does not have parallel edges and the digraph
G2 is weakly reversible (i.e., for any pair of nodes in the same connected component
there is a directed path joining them), iii) for each vertex i of G◦2 and any choice
of i-trees T, T ′ of G◦2, the quotient cT/cT

′
only depends on the rate constants τ . It

is interesting to note that even if this definition is restrictive, many of the common
enzymatic networks in the literature satisfy these conditions.
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Chapter 2

Lower bounds for positive roots
and regions of multistationarity

In this chapter, we develop tools from real algebraic geometry based on the paper [7]
by Bihan, Santos, and Spaenlehauer, to find coefficients for which a given real sparse
polynomial system has more than one positive solution. The basic idea we develop in
this chapter is to detect in the convex hull of the support of the monomials that define
the equations, (at least two) simplices positively decorated (see Definition 2.2.10)
that form part of a regular subdivision. This ensures the extension of the positive
real solutions of the corresponding subsystems to the total system. We apply this
general framework to analyze systems biology models. In particular, we use it to
describe multistationarity regions in parameter space, that is, to find parameters for
which multistationarity occurs.

We exemplify our theoretical results in different biochemical networks of interest
of arbitrary size and number of variables. For this, we need to adapt the theoretical
results to make them amenable to effective computations in a variety of specific in-
stances in the modeling of biochemical systems. Our developments are also based on
the existence of explicit parametrizations of the corresponding steady state varieties,
as described in Theorems 4.1 and 4.8 in [86].

We give two complementary approaches. On one side, we show how to deform
a given choice of reaction rate constants and total concentration constants in order
to produce multistationarity. On the other side, we describe open multistationarity
regions in the space of all these constants. We derive inequalities in the reaction
constants and in the total conservation constants whose validity implies the presence
of multistationarity.

First, to illustrate our approach, we present in Section 2.1 our results for a two
component system. In Sections 2.2 and 2.3 we state and explain the theoretical
setting, which is of general interest for the search of positive solutions of sparse
real polynomial systems beyond the applications we consider. In Section 2.2 we
work with the same support for all the polynomials of the system. In Section 2.3 we
present a mixed approach to the results of Section 2.2, considering different supports
for each polynomial. We refer the reader to [24, 53] for the definitions and main

25
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properties of the combinatorial objects we deal with.

Our main results in these sections are Theorems 2.2.13 and 2.3.3. In the fol-
lowing sections, we apply these results for a class of biochemical reaction networks
under mass-action kinetics. This application is not straightforward and requires
both known and new results on the structure of their steady states.

In Section 2.4, we study the sequential distributive multisite phosphorylation
systems with any number n of phosphorylation sites, introduced in Section 1.2 of
Chapter 1. Such systems were studied by many authors, starting with Wang and
Sontag [108]. They gave bounds and conditions on the total conservation constants
for which there exists rate constants ensuring monostationarity or multistationarity,
with an interesting treatment ad hoc, which also allowed them to find improved
lower bounds (see also [63]). In [16], Conradi and Mincheva showed using degree
theory and computations with the aid of a computer algebra system, that catalytic
constants determine the capacity for multistationarity in the dual phosphorylation
mechanism. They also indicate in the case n = 2 how to find values of the total
concentrations such that multistationarity occurs. The more general interesting
approach in [12] is also based on degree theory. The authors show how to find
conditions on the reaction rates to guarantee mono or multistationarity, but they do
not describe the particular total concentration constants for which there are multiple
equilibria. With our approach, we obtain for any n a system of three polynomial
equations in three variables that describes the steady states, in the framework of
[7]. We give conditions both on some of the reaction constants and on the total
concentration constants, so that there are at least two positively decorated simplices
in a regular subdivision of the convex hull of our support and by rescaling the rest
of the parameters, we guarantee the existence of at least two nondegenerate positive
steady states (see Theorem 2.4.1).

These systems, as well as the two-component system that we will introduce in
Section 1.1, are examples of MESSI systems, presented in Section 1.4 of Chapter 1.
In Section 2.5, we focus on s-toric MESSI systems, which includes the sequential
phosphorylation systems, for which explicit monomial parametrizations of the steady
states are given in [86]. We prove general results for s-toric MESSI systems, that
in particular explain our computations in Section 2.4. Theorem 2.5.2 is the key to
apply the framework of Theorem 2.2.13 to describe multistationarity regions for all
these biological systems.

2.1 Our results for a two-component system

We showcase our results in a simple meaningful example. The following chemical
reaction network is a two-component system [95] with hybrid histidine kinase (hy-
brid HK) whose multistationarity was studied in [12, 70]. Two-component signal
transduction systems enable bacteria to sense, respond, and adapt to a wide range
of environments, stressors, and growth conditions. This network has six species
X1, . . . , X6, ten complexes, and six reactions, with labels given by positive reaction
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rate constants k1, . . . , k6:

X1
k1−→ X2

k2−→ X3
k3−→ X4

X3 +X5
k4−→ X1 +X6 (2.1.1)

X4 +X5
k5−→ X2 +X6

X6
k6−→ X5

This labeled digraph represents the following biological mechanism. Two compo-
nent signaling relies on phosphotransfer reactions between histidine and aspartate
residues on histidine kinases (HKs) and response regulator (RR) proteins. The hy-
brid HK consists of two phosphorylable domains. We denote the phosphorylation
state of each site by p if the site is phosphorylated and 0 if it is not; the four possible
states of HK are denoted by HK00, HKp0, HK0p, and HKpp. We let RR be the
unphosphorylated response regulator protein, and RRp the phosphorylated form.
Upon receiving a signal, the HK can auto-phosphorylate. Whenever the second
phosphorylation site is occupied, the phosphate group can be transferred to RR. In
(2.1.1), we displayed the corresponding network of reactions denoting by X1, . . . , X6

the chemical species HK00, HKp0, HK0p, HKpp, RR,RRp, respectively.
In what follows, we denote the concentration of the chemical species X1, . . . , X6

by lower-case letters x1, . . . , x6. Under mass-action kinetics, these concentrations
are assumed to be functions which evolve in time t, according to the following
polynomial autonomous dynamical system:

dx1

dt
= f1(x) = −k1x1 + k4x3x5,

dx2

dt
= f2(x) = k1x1 − k2x2 + k5x4x5,

dx3

dt
= f3(x) = k2x2 − k3x3 − k4x3x5,

dx4

dt
= f4(x) = k3x3 − k5x4x5,

dx5

dt
= f5(x) = −k4x3x5 − k5x4x5 + k6x6,

dx6

dt
= f6(x) = k4x3x5 + k5x4x5 − k6x6.

It is straightforward to check that there are two linearly independent relations:
f1 + f2 + f3 + f4 = f5 + f6 = 0, which imply the existence of two constants T1, T2

such that for any value of time t:

`1(x) = x1 + x2 + x3 + x4 = T1, (2.1.2)

`2(x) = x5 + x6 = T2.

We assume that the linear variety cut out by these equations intersects the positive
orthant, so T1, T2 are also positive parameters. These parameters T1, T2 are the
total conservation constants and the linear equations `1 and `2 are the conservation
laws.

We now explain our strategy in the previous network (2.1.1). Our problem is to
determine values of (k1, . . . , k6, T1, T2) in R8

>0 for which the polynomial system

f1(x) = · · · = f6(x) = `1(x)− T1 = `2(x)− T2 = 0,
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has more than one positive solution x ∈ R6
>0. We have, using the framework of the

main Theorems 2.2.11 and 2.2.13:

Theorem 2.1.1. With the notation of (2.1.1) and (2.1.2), assume that a fixed choice

of reaction rate constants satisfies the condition k3 > k1. Then, k6

(
1

k2

+
1

k3

)
<

k6

(
1

k1

+
1

k2

)
and for any choice of total concentration constants verifying the in-

equalities

k6

(
1

k2

+
1

k3

)
<
T1

T2

< k6

(
1

k1

+
1

k2

)
, (2.1.3)

there exist positive constants N1, N2 such that for any values of β4 and β5 satisfying
β4 > N1 and β5

β4
> N2, the system has at least three positive steady states after

modifying only the parameters k4, k5 via the rescaling k4 = β4 k4, k5 = β5 k5.

In [12], the authors present necessary and sufficient conditions for the multista-
tionarity of the network. They prove that the region of the reaction rate constant
space for which multistationarity exists is completely characterized by the inequality
k3 > k1, but they do not describe the particular stoichiometric compatibility classes,
determined by the total conservation constants, for which there are multistationar-
ity. In contrast, we go further by giving joint conditions on the total conservation
and the reaction rate constants for the ocurrence of multistationarity.

In [70] necessary and sufficient conditions on all the parameters of this same net-
work for bistability are provided, with an ad-hoc treatment using Sturm’s Theorem.
Our approach is systematic and can be used in a great variety of biological networks.

2.2 Positive solutions of sparse polynomial sys-

tems

Along this section, we fix a finite point configuration

A = {a1, . . . , an} ⊂ Zd, n ≥ d+ 2,

and we assume that the convex hull of A is a full-dimensional polytope. A subset
of A consisting of affinely independent points will be called a simplex; we will also
say that it is a d-simplex when the dimension of its convex hull is d.

2.2.1 Regular subdivisions

A regular subdivision of A is induced by a height function h : A → R, also identified
with the vector h = (h(a1), . . . , h(an)), as follows. Consider the lower convex hull
of the lifted configuration

Ah = {(a1, h(a1)), . . . , (an, h(an))} ⊂ Rd+1,
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a
Rd

Rd+1(a, h(a))

Figure 2.1: Regular triangulation. Figure 2.2: Nonregular triangulation.

which is the union of the faces of the convex hull of Ah for which the inner normal
directions have positive last coordinate. The associated regular subdivision Γh is the
collection of the subsets AF = {ai : (ai, h(ai)) ∈ F} of A, which are the projections
back to A of lifted points in a face F of this lower convex hull.

It is useful to have a more geometric picture of this subdivision, like the one
depicted in Figure 2.1, but it is important to note that these subsets AF cannot
be identified in general with their convex hulls, which are convex polytopes with
integer vertices, but with their marked convex hulls containing all the points aj ∈ A
for which the affine linear function which interpolates the values of h at the vertices,
takes the value h(aj) at aj (so, other points in A besides the vertices of the polytopes
can occur in the subsets AF ).

A regular subdivision is called a regular triangulation of A if the only points in
each subset of the subdivision are the vertices of their convex hull and these vertices
are affinely independent. Figure 2.2 depicts a triangulation into simplices which is
not regular, that is, which cannot be induced by any height function h.

The set of all height vectors inducing a regular subdivision Γ of A is defined by
a finite number of linear inequalities. Thus, this set is a finitely generated convex
cone CΓ in Rn with apex at the origin. When Γ is a triangulation, the cone CΓ is
full dimensional (cut out by strict inequalities). All these facts and many more are
described in Chapter 7 in [53].

We will denote by A ∈ Z(d+1)×n the integer matrix:

A =

(
1 . . . 1
a1 . . . an

)
, (2.2.1)

and by Ah ∈ R(d+2)×n the matrix:

Ah =

 1 . . . 1
a1 . . . an
h1 . . . hn

 . (2.2.2)

Note that our assumption that the convex hull of A has dimension d is equivalent
to assuming that the rank of A is equal to d+ 1.
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Let ∆ = {ai1 , . . . , aid+1
} be a d-simplex with vertices in A. Let I = {i1, . . . , id+1}

and assume that i1 < · · · < id+1. Denote by dI the determinant of the (d + 1) ×
(d + 1) submatrix of A with columns indicated by I, which is nonzero because we
are assuming that ∆ is a simplex. Also, for any index i /∈ I, denote by dI∪{i}(h)
the determinant of the (d+ 2)× (d+ 2) submatrix of Ah with columns indicated by
I ∪ {i}, multiplied by the sign of the permutation that sends the set of indices in
I ∪ {i} ordered by < to (i1, . . . , id+1, i) with i as the last index. Using the Laplace
expansion of the determinant along the last row, we see that dI∪{i}(h) is an affine
linear function of h. Thus, there exists an integer vector mI

i with support included
in I ∪ {i} and with nonzero i-th coordinate dI such that

dI∪{i}(h) = 〈mI
i , h〉.

Moreover, mI
i belongs to the kernel of A. This follows from the well known fact that

for any k × (k + 1) matrix M , the vector with coordinates (−1)j minor(M, j), j =
1, . . . , k+ 1, belongs to the kernel of M (here minor(M, j) is the determinant of the
square matrix obtained by removing the j-th column, compare with Definition 2.2.8).

Consider the cone C∆ of all height vectors inducing a regular subdivision of A
that contains ∆. Observe that C∆ is nonempty; for instance, any vector h ∈ Rn

with hi = 0 for any i ∈ I and hi > 0 for any index i /∈ I, belongs to C∆. Moreover,
C∆ is an open rational polyhedral cone, described as follows:

Lemma 2.2.1. With the previous notations, we have:

C∆ = {h ∈ Rn : dI · dI∪{i}(h) > 0 for all i /∈ I}

and the n− (d+ 1) vectors dI ·mI
i , i /∈ I, are a basis of the kernel of A.

The proof of Lemma 2.2.1 is straightforward. Note that the coefficient of hi
in the linear function dI · dI∪{i}(h) = 〈dI · mI

i , h〉 is d2
I > 0. Hence, for any any

vector h ∈ Rn with hi = 0 for any i ∈ I and hi > 0 for any index i /∈ I we have
〈dI ·mI

i , h〉 > 0 as wanted.
Let p ≥ 1 and consider ∆1, . . . ,∆p d-simplices in A. We denote by C∆1,...,∆p

the cone of all height vectors h defining a regular subdivision of A that contains
∆1, . . . ,∆p. We deduce from Lemma 2.2.1 the following description.

Lemma 2.2.2. Let ∆1, . . . ,∆p be simplices in A which occur in a regular subdivision
of A. Letting Ik denote the index set of the vertices of ∆k for any k = 1, . . . , p, the
nonempty open polyhedral cone C∆1,...,∆p is defined by the linear inequalities

C∆1,...,∆p = {h ∈ Rn : dIk · dIk∪{i}(h) > 0 ∀k = 1, . . . , p, and ∀i /∈ Ik}, (2.2.3)

and the vectors dIk ·m
Ik
i , with k = 1, . . . , p and i /∈ Ik, generate the kernel of A.

Remark 2.2.3. An equivalent way to define the cone C∆1,...,∆p is as follows. Given
a d-simplex ∆ with vertices in A, we consider height vectors h ∈ Rn, where each
coordinate hj of h gives the value of a lifting function on the point aj of A. Denote
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by ϕ∆,h the unique affine function that agrees with h on the points of ∆, that is,
ϕ∆,h(aj) = hj for all aj ∈ ∆. We associate with ∆ the following cone:

C∆ = {h = (h1, . . . , hn) ∈ Rn : ϕ∆,h(aj) < hj for all aj /∈ ∆}.

Then, C∆1,...,∆p = ∩pi=1C∆i
.

We introduce the following notation.

Definition 2.2.4. We will say that two d-simplices ∆1,∆2 ⊂ A share a facet if the
intersection of their convex hulls is a facet of both, that is, a face of codimension
one. See Figure 2.3.

∆2

∆1

∆2

∆1

Figure 2.3: Examples of 2-simplices ∆1 and ∆2, which share a facet.

We will need the following observation:

Remark 2.2.5. A point configuration B = {b1, . . . , bd+2} with d + 2 points which
span Rd and such that any proper subset is affinely independent, is called a circuit.
Any circuit B has exactly two triangulations Γ±, which are furthermore regular.
They can be described in the following way (see Proposition 1.2, Chapter 7 in [53]).
Consider any nonzero vector λ ∈ Rd+2 such that

∑d+2
i=1 λi = 0 and

∑d+2
i=1 λibi = 0

(in other words, any nontrivial affine relation on B). Note that all coordinates of
λ are nonzero. Write [d + 2] = {1, . . . , d + 2} as the disjoint union N+ t N−, with
N+ = {i ∈ [d + 2] : λi > 0} and N− = {i ∈ [d + 2] : λi < 0}. The d-simplices of
Γ+ are the sets [d+ 2] \ {i} for i ∈ N+. Similarly, the d-simplices of Γ− are the sets
[d+ 2] \ {i} for i ∈ N−.

We are ready to prove the following proposition, that we will need in our appli-
cations.

Proposition 2.2.6. Let ∆1, ∆2 be two d-simplices in A which share a facet. Then,
there exists a regular subdivision of A containing ∆1 and ∆2, and so the cone C∆1,∆2

is nonempty. Moreover, there exists a regular triangulation containing both sim-
plices.

Proof. The configuration B = ∆1 ∪ ∆2 has cardinality d + 2 and it is a circuit.
By Remark 2.2.5, B has exactly two regular triangulations Γ±. Without loss of
generality, assume B = {a1, . . . , ad+2}, with F = {a1, . . . , ad} the common facet of
∆1 and ∆2. Let λ ∈ Zd+2 be a nontrivial affine relation on B. As ad+1 and ad+2 lie
in opposite sides of the hyperplane passing through F , it holds that λd+2 and λd+1
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have the same sign. Therefore ∆1 and ∆2 belong to the same regular triangulation,
say Γ+.

Let h : B → R be a height function inducing Γ+. Let ϕ1, . . . , ϕ` be the affine
linear functions which interpolate the values of h at each of the d-simplices of Γ+

and set ϕ = max{ϕ1, . . . , ϕ`}. For any choice of generic positive values hd+3, . . . , hn
verifying hj > ϕ(aj) for any j = d + 3, . . . , n, the height function h′ : A → R that
extends h by defining h′(aj) = hj, j = d + 3, . . . , n, induces a regular triangulation
of A extending Γ+, and so in particular, it contains ∆1 and ∆2.

Remark 2.2.7. Under the notations of Lemma 2.2.2 with p = 2, if ∆1 and ∆2 share
a common facet with vertices ai with i ∈ I, then the inequality corresponding to
k = 1 and i ∈ I2 \ I coincides with the one corresponding to k = 2 and i ∈ I1 \ I,
so that we can forget one of these inequalities in (2.2.3) to get 2(n − d − 1) − 1 =
2n− 2d− 3 inequalities defining C∆1,∆2 . This generalizes the circuit case where any
of the two regular triangulations is determined by one of its simplices.

2.2.2 Decorated simplices and lower bounds for the number
of positive solutions

Consider a sparse polynomial system in d variables x = (x1, . . . , xd) with support
included in A and coefficient matrix C = (cij) ∈ Rd×n:

f1(x) = · · · = fd(x) = 0, (2.2.4)

with

fi(x) =
n∑
j=1

cij x
aj ∈ R[x1, . . . , xd], i = 1, . . . , d.

A solution of (2.2.4) is nondegenerate when it is not a zero of the Jacobian of
f1, . . . , fd. We recall some definitions from Section 3 in [7].

Definition 2.2.8. A d × (d + 1) matrix M with real entries is called positively
spanning if all the values (−1)i minor(M, i) are nonzero and have the same sign,
where minor(M, i) is the determinant of the square matrix obtained by removing the
i-th column.

Equivalently, a matrix is positively spanning if all the coordinates of any nonzero
vector in the kernel of the matrix are nonzero and have the same sign.

Proposition 3.3 in [7] says that if the support A of the system (2.2.4) is a d-
simplex, then it has one nondegenerate positive solution if and only if the matrix of
coefficients C is positively spanning.

Proposition 2.2.9 (Proposition 3.3 in [7]). Consider A = {a1, . . . , ad+1} ⊂ Zd
a d-simplex and a matrix C = (cij) ∈ Rd×(d+1). The system with support A and
coefficient matrix C as in (2.2.4) has at most one nondegenerate positive solution,
and it has one nondegenerate positive solution if and only if the matrix C is positively
spanning.
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Proof. Multiplying the system by x−ad+1 (which does not change the set of positive
solutions), we can assume without loss of generality that ad+1 = 0. Consider the
monomial map

φ : Rd
>0 → Rd

>0,

x 7→ (xa1 , . . . , xad).

This map is a bijection since A is affinely independent. Let `1(x1, . . . , xd) = · · · =
`d(x1, . . . , xd) = 0 be the linear system defined by:

`i(x) =
d∑
j=1

cijxj, i = 1, . . . , d.

Since (`i ◦ φ)(x1, . . . , xd) = fi(x) for each i = 1, . . . , d, the positive solutions of
f1(x) = · · · = fd(x) = 0 are in bijection with the positive solutions of `1(x1, . . . , xd) =
· · · = `d(x1 . . . , xd) = 0. And this linear system has a unique positive solution if and
only if the matrix C is positively spanning.

Let A = {a1, . . . , an} ⊂ Zd and coefficient matrix C = (cij) ∈ Rd×n. Let Γ be a
regular subdivision of A and h ∈ CΓ. Consider the following family of polynomial
systems parametrized by a positive real number t:

f1,t(x) = · · · = fd,t(x) = 0, (2.2.5)

where

fi,t(x) =
n∑
j=1

cij t
h(aj) xaj ∈ R[x1, . . . , xd], i = 1, . . . , d, t > 0.

For each positive real value of t, this system has again support included in A.

Definition 2.2.10. Let C be a d × n matrix with real entries. We say that a d-
simplex ∆ = {ai1 , . . . , aid+1

} in Γ is positively decorated by C if the d × (d + 1)
submatrix of C with columns indicated by {i1, . . . , id+1} is positively spanning.

The following result is a slight generalization of Theorem 3.4 in [7]. This last
theorem is a version of Viro’s method ([105]) which was used in [96] to construct
sparse polynomial systems such that all their solutions are real.

Theorem 2.2.11. Let A = {a1, . . . , an} ⊂ Zd be a finite point configuration. Let
∆1, . . . ,∆p be distinct d-simplices which occur in a regular subdivision Γ of A, and
which are positively decorated by a matrix C ∈ Rd×n. Let h be a height function
that defines Γ. Then, there exists t0 ∈ R>0 such that for all 0 < t < t0, the number
of (nondegenerate) solutions of (2.2.5) contained in the positive orthant is at least
p. Moreover, if there are two d-simplices with vertices in A sharing a facet and
which are both positively decorated by C, then, there exists t0 ∈ R>0 such that for
all 0 < t < t0 the number of positive solutions of (2.2.5) is at least two.
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The first part of Theorem 2.2.11 is a slight extension of Theorem 3.4 in [7] in that
we don’t assume that Γ is a triangulation. Clearly, the proof of Theorem 3.4 in [7]
works identically when Γ is any regular subdivision and thus gives a proof of the first
part of Theorem 2.2.11. The idea of the proof is to observe that the system obtained
by considering only the monomials in a positively decorated d-simplex has exactly
one nondegenerate positive solution by Proposition 2.2.9. Then, as a consequence of
the fact that the subdivision is regular, we can jointly extend the positive solutions
of the p restricted systems to p positive solutions of system (2.2.5), for small values
of t > 0. We present the complete proof below.

Proof of Theorem 2.2.11. For each ` = 1, . . . , p, let ϕ` be the affine function that
agrees with h for all aj ∈ ∆` and ϕ`(aj) < hj for aj /∈ ∆`. Let α` = (α1`, . . . , αd`) ∈
Rd and β` ∈ R such that ϕ`(x) = 〈α`, x〉+ β`.

Set xt−α` = (x1t
−α1` , . . . , xdt

−αd`). We have that

fi,t(xt
−α`)

tβ`
= f

(`)
i (x) + ri,t(x), (2.2.6)

where f
(`)
i (x) =

∑
aj∈∆`

cijx
aj and ri,t(x) is a polynomial, each of whose coefficients

is equal to a positive power of t multiplied by a coefficient of C. Since ∆` is positively
decorated by C, by Proposition 2.2.9, the system f

(`)
1 (x) = · · · = f

(`)
d (x) = 0 has

one nondegenerate positive solution z`. It follows that for t small enough the system
f

(`)
1 (x)+r1,t(x) = · · · = f

(`)
d (x)+rd,t(x) = 0 has one nondegenerate positive solution

close to z`. More precisely, for all ε > 0, there exists tε,` > 0 such that for all

0 < t < tε,`, there exist a nondegenerate solution z`,t of f
(`)
1 (x) + r1,t(x) = · · · =

f
(`)
d (x) + rd,t(x) = 0 such that |z`,t − z`| < ε . Then, from (2.2.6), z`,tt

−α` is a
solution of system (2.2.5). Choose ε small enough such that the balls of radius ε
centered at z`, ` = 1, . . . , p are contained in a compact set K ⊂ Rd

>0. Since the
vectors α` are distinct, there exists t′ > 0 such that for all 0 < t < t′, the sets
K · t−α` = {(x1t

−α1` , . . . , xdt
−αd`) : (x1, . . . , xd) ∈ K} for ` = 1, . . . , p are pairwise

disjoint. Take t0 = min{t′, tε,1, . . . , tε,p}. Then, for 0 < t < t0, each set K · t−α`
contains a nondegenerate positive solution z`,tt

−α` of the system (2.2.5).

We will give a similar result in Theorem 2.2.13 below, but our focus is to describe
a subset with nonempty interior in the space of coefficients where we can bound from
below the number of positive solutions of the associated system. We start with a
general result about convex polyhedral cones.

Proposition 2.2.12. Let L be a linear subspace of Rn of dimension `1 together with
a basis {v1, . . . , v`1}. Let m1, . . . ,m` be a system of generators of L⊥ such that the
open polyhedral cone

C = {h ∈ Rn : 〈mr, h〉 > 0, r = 1, . . . , `}

is nonempty. For any ε ∈ R`
>0, denote by Cε the n-dimensional convex polyhedral

cone
Cε = {h ∈ Rn : 〈mr, h〉 > εr, r = 1, . . . , `}. (2.2.7)
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Consider the map ϕ : R`1
>0 × R>0 × Rn → Rn

>0:

ϕ(α, t, h) = (th1

`1∏
j=1

α
vj1
j , . . . , thn

`1∏
j=1

α
vjn
j ).

Then, we have:

ϕ(R`1
>0 × (0, t0)× Cε) = {γ ∈ Rn

>0 : γmr < tεr0 , r = 1 . . . , `} and (2.2.8)

ϕ(R`1
>0 × (0, t0]× C̄ε) = {γ ∈ Rn

>0 : γmr ≤ tεr0 , r = 1 . . . , `}, (2.2.9)

where C̄ε denotes the closure of Cε.

Proof. We first prove that a positive vector γ is of the form γ = ϕ(α, t, h) if and
only if

γmr = t〈mr,h〉, r = 1, . . . , `.

The only if part is straightforward, taking into account that we are assuming that
for any r, j it holds that 〈mr, vj〉 = 0:

ϕ(α, t, h)mr = t〈mr,h〉
`1∏
j=1

α
〈mr,vj〉
j = t〈mr,h〉.

On the other side, if γmr = t〈mr,h〉 for any r = 1, . . . , `, then the vector

γt,h = (γ1 t
−h1 , . . . , γn t

−hn)

verifies that γmt,h = 1, for any m ∈ L⊥. Thus, taking coordinatewise logarithms, we
get that

〈m, log(γt,h)〉 = 0 for any m ∈ L⊥,

which means that log(γt,h) ∈ L. Then, there exist real constants λ1, . . . , λ` such

that log(γt,h) =
∑`

j=1 λj vj. Calling α ∈ R`
>0 the vector with coordinates αj = eλj

we get that γ = ϕ(α, t, h), as wanted.
Now, assuming 0 < t < t0 < 1 and 〈mr, h〉 > εr for all r = 1 . . . , `, we have that

t〈mr,h〉 < tεr0 and moreover (0, tεr0 ) = {t〈mr,h〉 : 0 < t < t0, h ∈ Cε}, which proves
both containments. The other equality follows immediately.

We now present the main result of this section.

Theorem 2.2.13. Consider a set A = {a1, . . . , an} of n points in Zd and a matrix
C = (cij) ∈ Rd×n. Assume there are distinct d-simplices ∆1, . . . ,∆p contained in
A, which are part of a regular subdivision of A and are positively decorated by the
matrix C.

Let m1 . . . ,m` ∈ Rn be vectors that define a presentation of the cone C∆1,...,∆p

of all height vectors h ∈ Rn that induce a regular subdivision of A containing
∆1, . . . ,∆p:

C∆1,...,∆p = {h ∈ Rn : 〈mr, h〉 > 0, r = 1, . . . , `}. (2.2.10)
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Then, for any ε ∈ (0, 1)` there exists t0(ε) > 0 such that for any γ in the open set

U = ∪ε∈(0,1)` {γ ∈ Rn
>0 : γmr < t0(ε)εr , r = 1 . . . , `},

the system
n∑
j=1

cij γj x
aj = 0, i = 1, . . . , d, (2.2.11)

has at least p nondegenerate solutions in the positive orthant. In particular, given
two d-simplices contained in A that share a facet, the system (2.2.11) has at least 2
nondegenerate positive solutions for any γ in U .

Proof. Let L be the linear subspace generated by the rows of the matrix A, and let
v1, . . . , vd+1 denote its row vectors, which are a basis of L because we are assuming
that A has rank d + 1. With this choice, we can apply Proposition 2.2.12 to the
cone C = C∆1,...,∆p , by Lemma 2.2.2. Note that the map ϕ : Rd+1

>0 ×R>0×Rn → Rn
>0

equals in this case:

ϕ(α, t, h) = (α(1, a1) th1 , . . . , α(1, an) thn).

We denote by Cε the closure of the cone Cε defined in (2.2.7). Let B denote the
closed unit ball in Rn. In the proof of Theorem 3.4 in [7], and thus in the proof
of Theorem 2.2.11, one can see that given any h, it is possible to find a positive
number t0 for which the conclusion of Theorem 2.2.11 holds for any h′ close to h.
As B ∩ Cε is compact, there exists t1(ε) ∈ (0, 1) such that the conclusion holds for
any t ∈ (0, t1(ε)) and any h ∈ B ∩ Cε. But if h ∈ Cε satisfies ||h|| > 1, we can write
it as h = ||h||h′, with h′ ∈ B ∩ Cε. Then, for any t ∈ (0, 1) and for i = 1, . . . , n
we have thi = (t||h||)h

′
i with 0 < t||h|| < t and so the conclusion of Theorem 2.2.11

holds for any h ∈ Cε provided t ∈ (0, t1(ε)]. By Proposition 2.2.12, the image by ϕ
of Rd+1

>0 × (0, t1(ε)] × Cε equals {γ ∈ Rn
>0 : γmr ≤ t1(ε)εr , r = 1 . . . , `}. Note also

that C∆1,...,∆p = ∪ε∈(0,1)` Cε.
Observe that if γ = ϕ(α, t, h), then for any j = 1, . . . , n,

γjx
aj = α(1, aj)xaj = α1t

hjyaj ,

where yi = αi+1xi for any i = 1, . . . , d. As all αi > 0, system (2.2.11) has the same
number of positive solutions as

n∑
j=1

cij t
hj yaj = 0, i = 1, . . . , d, (2.2.12)

and this number is at least p for t ∈ (0, t1(ε)].

Remark 2.2.14. Theorem 2.2.13 says that if we choose ε ∈ (0, 1)`, then there exists
positive real numbers M1 = M1(ε), . . . ,Mr = Mr(ε), such that system (2.2.11) has
at least p nondegenerate solutions in the positive orthant for any vector γ in Rn

>0

satisfying
γmr < Mr for r = 1, . . . , `. (2.2.13)
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We have to remark that the choice of the positive constants M1, . . . ,Mr is not
algorithmic, but our result makes clear that there is an open set in coefficient space
for which many positive solutions can be found, and inequalities (2.2.13) indicate
“in which directions” the coefficients have to be scaled in order to get at least as
many positive solutions as the number of decorated simplices.

As a first application of Theorems 2.2.11 and 2.2.13, we give a proof of Theo-
rem 2.1.1, corresponding to the example of the two component system with Hybrid
Histidine Kinase (2.1.1) in Section 2.1. The systematic procedure to determine a
multistationarity region using our approach is the following. We first replace a
parametrization of the steady states into the conservation relations and we obtain
a new sparse polynomial system to which we apply Theorems 2.2.11 and 2.2.13.
After that, we show that the rescaling of the coefficients in this new system can be
achieved by rescaling some of the original parameters.

Proof of Theorem 2.1.1. From f2 = f3 = f4 = f5 = 0 we get:

x1 =
k4k5x4x

2
5

k1k3

, x2 =
k4k5x4x

2
5

k2k3

+
k5x4x5

k2

, x3 =
k5x4x5

k3

, x6 =
k4k5x4x

2
5

k3k6

+
k5x4x5

k6

.

Then, at steady state, the concentrations of the species can be obtained from the
values of x4 and x5. If we replace these expressions into the conservation laws (2.1.2),
we get the equations:

k4k5x4x
2
5

k1k3

+
k4k5x4x

2
5

k2k3

+
k5x4x5

k2

+
k5x4x5

k3

+ x4 − T1 = 0,

x5 +
k4k5x4x

2
5

k3k6

+
k5x4x5

k6

− T2 = 0.

We can write this system in matricial form:

C
(
x4 x5 x4x5 x4x

2
5 1

)t
= 0,

where C ∈ R2×5 is the coefficient matrix:

C =

(
1 0 C13 C14 −T1

0 1 C23 C24 −T2

)
,

and C13 = k5

(
1
k2

+ 1
k3

)
, C14 = k4k5

k3

(
1
k1

+ 1
k2

)
, C23 = k5

k6
and C24 = k4k5

k3k6
. If we order

the variables (x4, x5) the support of this system is:

A = {(1, 0), (0, 1), (1, 1), (1, 2), (0, 0)}.

The 2-simplices ∆1 = {(1, 0), (1, 1), (0, 0)}, ∆2 = {(1, 1), (1, 2), (0, 0)}, and ∆3 =
{(0, 1), (1, 2), (0, 0)} form a regular triangulation Γ of A, associated for instance
with any height function h : A → R satisfying h(1, 0) = h1, h(0, 1) = h2, h(1, 1) =
0, h(1, 2) = 0, and h(0, 0) = 0, with h1, h2 > 0. We depict this triangulation
in Figure 2.4.
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(0,0)

(0,1)

(1,0)

(1,1)

(1,2)

(0,0,0)

(0,1,h2)

(1,1,0)

(1,2,0)

(1,0,h1)

Figure 2.4: A regular triangulation Γ of A.

The simplex ∆1 is positively decorated by C if and only if

T1 k2 k3 − T2 k2 k6 − T2 k3 k6 > 0, (2.2.14)

and the simplex ∆3 is positively decorated by C if and only if

T1 k1 k2 − T2 k1 k6 − T2 k2 k6 < 0. (2.2.15)

If conditions (2.2.14) and (2.2.15) hold, then the simplex ∆2 is also positively dec-
orated by C if and only if k1 < k3. So, the three simplices are positively decorated
by C precisely when (2.1.3) holds:

k6

(
1

k2

+
1

k3

)
<
T1

T2

< k6

(
1

k1

+
1

k2

)
.

Assume that both inequalities in (2.1.3) hold. In this case, using the height
function described above, Theorem 2.2.11 says that there exists t0 ∈ R>0 such that
for all 0 < t < t0, the system

th1x4 + C13 x4x5 + C14 x4x
2
5 − T1 = 0,

th2x5 + C23 x4x5 + C24 x4x
2
5 − T2 = 0,

(2.2.16)

has at least three positive nondegenerate solutions.
If we make the change of variables: x̄4 = th1 x4, x̄5 = th2 x5 we have:

x̄4 + t−(h1+h2) C13 x̄4x̄5 + t−(h1+2h2)C14 x̄4x̄
2
5 − T1 = 0,

x̄5 + t−(h1+h2) C23 x̄4x̄5 + t−(h1+2h2) C24 x̄4x̄
2
5 − T2 = 0.

(2.2.17)

If we consider the rescalings:

k4 = t−h2 k4, k5 = t−(h1+h2) k5,

and we keep fixed the values of the remaining constants k1, k2, k3, k6 and the total
concentrations T1, T2, then the steady states of the dynamical system associated
with the network with these rate and total conservation constants are the solutions
of the polynomial system (2.2.17). And then, for these constants the network has
at least three positive steady states. If we take N1 = t−h2

0 and N2 = t−h1
0 and we
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consider any positive β4, β5 satisfying β4 > N1 and β5

β4
> N2, there exist 0 < t < t0

such that β4 = t−h1 and β5 = t−(h1+h2) and we are done.

Another way to finish the proof of Theorem 2.1.1 is using Theorem 2.2.13. The
inequalities that define the cone CΓ are: 〈m1, h〉 > 0, 〈m2, h〉 > 0, where m1 =
(1, 0,−2, 1, 0) and m2 = (0, 1, 1,−1,−1) (they can be computed using Lemma 2.2.2).
Fix ε ∈ (0, 1)2. As (2.1.3) holds, Theorem 2.2.13 says that there exist M1 =
M1(ε),M2 = M2(ε) > 0 such that the polynomial system

γ1 x4 + γ3C13 x4x5 + γ4C14 x4x
2
5 − γ5 T1 = 0,

γ2 x5 + γ3C23 x4x5 + γ4C24 x4x
2
5 − γ5 T2 = 0,

(2.2.18)

has at least three nondegenerate positive solutions for any vector γ ∈ (R>0)5 satisfy-
ing γm1 < M1 and γm2 < M2. In particular, this holds if we take γ1 = γ2 = γ5 = 1,
and γ3 and γ4 satisfy:

γ−2
3 γ4 < M1, γ3γ

−1
4 < M2. (2.2.19)

If we call β4 = γ4

γ5
, β5 = γ5, N1 = 1

M1
, N2 = 1

M2
, the inequalities in (2.2.19) are

equivalent to β4 > N1 and β5

β4
> N2. Then, if β4 and β5 satisfy these bounds,

rescaling of the given parameters k4, k5 by k4 = β4 k4, k5 = β5 k5, gives rise to a
multistationary dynamical system, as we claimed.

2.3 The mixed approach

In this section, we present a similar but different approach to Theorems 2.2.11
and 2.2.13. As the polynomials f1, . . . , fd might have different supportsA1, . . . ,Ad ⊂
Zd, one usually takes the union of the supports A = ∪di=1Ai. That is, we can write
the polynomial system

fi(x) =
∑
aj∈Ai

cij x
aj ∈ R[x1, . . . , xd], i = 1, . . . , d (2.3.1)

in the form

fi(x) =
∑
aj∈A

cij x
aj ∈ R[x1, . . . , xd], i = 1, . . . , d,

where cij = 0 in case aj /∈ Ai.
If one considers the approach in Section 2.2, the coefficient matrix C might have

many zero minors, which could prevent to find decorated simplices. We now allow
different height functions h(i) : Ai → R, i = 1, . . . , d. Instead of considering regular
subdivisions of A, we will consider regular mixed subdivisions of the Minkowski sum
M =

∑d
i=1Ai defined by height functions h(i) : Ai → R, i = 1, . . . , d. The projection

of the lifted points in each of the faces of the lower convex hull of the Minkowski
sum

∑d
i=1Ah

(i)
of the lifted point sets Ah(i) ⊂ Rd+1 defines the associated regular

mixed subdivision Sh of M. The convex hull of the cells in Sh do not intersect or
the intersection is a common face.
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Regular mixed subdivisions of M are in bijection with regular subdivisions of
the associated Cayley configuration C(A1, . . . ,Ad). This is the lattice configuration
in Zd × Zd defined by

C(A1, . . . ,Ad) = (A1 × {e1}) ∪ · · · (Ad−1 × {ed−1}) ∪ (Ad × {ed}), (2.3.2)

where e1, . . . , ed denotes the canonical basis in Zd. This is the support of the Cayley
polynomial:

F (x, y) =
d∑
i=1

yifi(x),

in variables (x1, . . . , xd, y1, . . . , yd), associated with polynomials fi(x) with support
in Ai, i = 1, . . . , d.

Note that the sum of the last d coordinates of any point in C(A1, . . . ,Ad) equals
1, so the maximal dimension of a simplex in the Cayley configuration is 2d− 1 and
then this simplex consists of 2d points. We will assume that C(A1, . . . ,Ad) contains
a (2d− 1)-simplex.

A tuple of height functions (h(1), . . . , h(d)) as above can be identified with a height
function h : C(A1, . . . ,Ad) → R, defining h(aj, ei) = h(i)(aj), i = 1, . . . , d. In case
∆ is a (2d − 1)-simplex in the associated regular subdivision Γh of C(A1, . . . ,Ad),
necessarily ∆ contains at least one point (aj, ei) in each Ai. The corresponding
maximal cell in the associated regular subdivision Sh of M consists of all points
of the form b1 + · · · + bd with (bi, ei) in ∆. For more details about the translation
between regular subdivisions of C(A1, . . . ,Ad) and regular mixed subdivisions of
M, we refer to Section 9.2 in [24]. We show this correspondence in Example 2.3.4
below.

We introduce the concept of positively decorated mixed simplex, which is related
to Definition 2.2.10. The connection between these definitions is that in both cases
the system obtained by considering only the monomials in a positively decorated
simplex, has exactly one nondegenerate positive solution.

Definition 2.3.1. A (2d− 1)-simplex ∆ in the Cayley configuration C(A1, . . . ,Ad)
is said to be mixed if it consists of two points (aj1 , ei), (aj2 , ei) for each i = 1, . . . , d,
with aj1 , aj2 ∈ Ai. A mixed simplex ∆ is said to be positively decorated by C if for
each i = 1, . . . , d, the coefficients of the polynomial fi as in (2.3.1) corresponding to
the monomials aj1 and aj2 have opposite signs, that is, if cij1cij2 < 0.

Let Γ be a regular subdivision of the Cayley configuration C(A1, . . . ,Ad). Let
h be a height vector that induces Γ and denote by h(1), . . . , h(d) the real vectors of
size equal to the cardinality of Ai, such that h(i)(aj) = h(aj, ei), for i = 1, . . . , d,
and aj ∈ Ai. Consider the family of polynomial systems parametrized by a positive
real number t:

fi,t(x) =
∑
aj∈Ai

cij t
h(i)(aj) xaj ∈ R[x1, . . . , xd], i = 1, . . . , d, t > 0. (2.3.3)

We then have:
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Theorem 2.3.2. Let A1, . . . ,Ad be finite sets in Zd. Assume there are p mixed
(2d−1)-simplices ∆1, . . . ,∆p which occur in a regular subdivision Γ of C(A1, . . . ,Ad)
and which are positively decorated by a matrix C ∈ Rd×n. Let h be a height function
inducing Γ and h(i), i = 1, . . . , d, defined as before. Then, there exists t0 ∈ R>0 such
that for all 0 < t < t0, the number of (nondegenerate) solutions of (2.3.3) contained
in the positive orthant is at least p. In particular, if there are two mixed (2d − 1)-
simplices of C(A1, . . . ,Ad) sharing a facet and which are both positively decorated by
C, there exists t0 ∈ R>0 such that for all 0 < t < t0 the number of positive solutions
of (2.3.3) is at least two.

Proof. Let ∆ be a mixed (2d− 1)-simplex in Γ. Then it consists of 2d points: two
points (aj1 , ei), (aj2 , ei) for each i = 1, . . . , d, with aj1 , aj2 ∈ Ai. Consider the system
(2.3.1) restricted to the binomials with exponents aj1 , aj2 in each fi. When ∆ is
positively decorated by C, we get a binomial system of equations equal to zero with
coefficients of opposite signs:

cij1 x
aj1 + cij2 x

aj2 = 0, i = 1, . . . , d.

The positive solutions of this binomial system are in correspondence with the solu-
tions of a system of a form:

xM = β,

where M ∈ Rd×d is the matrix with i-th row equal to aj1−aj2 and βi = − cij2
cij1
∈ R>0,

for each i = 1, . . . , d. Taking logarithms, we obtain the equivalent linear system:

M t log(x) = log(β), (2.3.4)

where log(x) = (log(x1), . . . , log(xd)). As ∆ is a maximal dimensional simplex, the
matrix M is invertible. Then, the linear system (2.3.4) has a solution, and thus the
binomial system has a positive solution. Therefore, for each positively decorated
simplex ∆ with vertices (aj1 , ei), (aj2 , ei), for each i, system (2.3.1) restricted to the
monomials with exponents aj1 ,aj2 in each fi has a solution in Rd

>0. The rest of the
proof follows from the arguments in the proof of Theorem 2.2.11.

The following result is an adaptation to the mixed setting of Theorem 2.2.13.
Again, instead of working with particular height functions, we use the cone of all
height functions inducing a regular subdivision of the associated Cayley configu-
ration containing a given set of p positively decorated simplices. This allows us to
describe open conditions to scale the coefficients in order to ensure at least p positive
solutions of the system.

Theorem 2.3.3. Let A1, . . . ,Ad be finite sets in Zd. Assume there exist p mixed
(2d− 1)-simplices ∆1, . . . ,∆p in C(A1, . . . ,Ad), which are part of a regular subdivi-
sion (for instance, when p = 2 and the two simplices share a facet) and are positively
decorated by C. Set N = |A1|+ . . . |Ad|. Assume that the cone C∆1,...,∆p of all height
vectors h inducing regular subdivisions of C(A1, . . . ,Ad) containing ∆1, . . . ,∆p is
defined by

C∆1,...,∆p = {h ∈ RN : 〈mr, h〉 > 0, r = 1, . . . , `}, (2.3.5)
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where mr = (mr,1, . . . ,mr,N) ∈ RN .
Then, for any ε ∈ (0, 1)` there exists t0(ε) > 0 such that for any γ in the set

U = ∪ε∈(0,1)` {γ = (γ1, . . . , γd) ∈ RN
>0 : γmr ≤ t0(ε)εr , r = 1 . . . , `},

the system ∑
aj∈Ai

cijγ
i
j x

aj = 0, i = 1, . . . , d,

has at least p nondegenerate solutions in the positive orthant, where γi is a vector
of size |Ai| with coordinates γij, with aj ∈ Ai.

As we said, Theorem 2.3.3 is an adaptation of Theorem 2.2.13, with a similar
proof (using Theorem 2.3.2 instead of Theorem 2.2.11), but with heavier notation,
so we omit the proof.

We now present an application of the mixed approach in Theorem 2.3.3 to the
previous example of the two component system with Hybrid Histidine Kinase (2.1.1).

Example 2.3.4. Recall that we are looking for positive solutions of the system:

C
(
x4 x5 x4x5 x4x

2
5 1

)t
= 0,

where C ∈ R2×5 is the coefficient matrix:

C =

(
1 0 C13 C14 −T1

0 1 C23 C24 −T2

)
,

with C13 = k5

(
1
k2

+ 1
k3

)
, C14 = k4k5

k3

(
1
k1

+ 1
k2

)
, C23 = k5

k6
and C24 = k4k5

k3k6
.

The support of the first polynomial is A1 = {(1, 0), (1, 1), (1, 2), (0, 0)} and the
support of the second polynomial is A2 = {(0, 1), (1, 1), (1, 2), (0, 0)}. We want
to find mixed positively decorated mixed 3-simplices of the Cayley configuration
C(A1,A2) occuring in a regular subdivision. As we mentioned, these mixed 3-
simplices correspond to maximal dimension 2 mixed cells of the associated mixed
subdivision of the Minkowski sum A1 +A2 (see Figure 2.5).

+

A1

=

A2

Figure 2.5: The Minkowski sum M = A1 +A2.

We can choose the following mixed 3-simplices with vertices in C(A1,A2):

∆1 = {(0, 0, e1), (1, 2, e1), (0, 0, e2), (0, 1, e2)},
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∆2 = {(0, 0, e1), (1, 2, e1), (0, 0, e2), (1, 1, e2)},
∆3 = {(0, 0, e1), (1, 0, e1), (0, 0, e2), (1, 1, e2)},

which are positively decorated by C. The simplices ∆1, ∆2, and ∆3 are in correspon-
dence, respectively, with the mixed cells σ1 = {(0, 0) = (0, 0)+(0, 0), (1, 2) = (1, 2)+
(0, 0), (0, 1) = (0, 0) + (0, 1), (1, 3) = (1, 2) + (0, 1)}, σ2 = {(0, 0), (1, 2), (1, 1), (2, 3)},
and σ3 = {(0, 0), (1, 0), (1, 1), (2, 1)}, depicted in Figure 2.6.

Figure 2.6: Three regular mixed subdivisions ofM that contain the mixed cells σ1,
σ2, and σ3.

The cone C∆1,∆2,∆3 of height vectors h = (h1, . . . , h8) ∈ R8 inducing regular
subdivisions of C(A1,A2) containing ∆1, ∆2, and ∆3 is defined by the inequalities
〈mi, h〉 > 0, i = 1, . . . , 8, where

m1 = (1, 0,−1, 0, 2, 0, 0,−2), m2 = (0, 1,−1, 0, 1, 0, 0,−1), m3 = (0, 0,−1, 1, 0, 0, 1,−1),

m4 = (0, 0,−1, 1, 1, 1, 0,−2), m5 = (1, 0, 1,−2, 0,−2, 0, 2), m6 = (0, 1, 0,−1, 0,−1, 0, 1),

m7 = (1, 0, 0,−1, 1,−1, 0, 0), m8 = (1, 0, 0,−1, 0,−2, 1, 1),

with h1 = h(1, 0, e1), h2 = h(1, 1, e1), h3 = h(1, 2, e1), h4 = h(0, 0, e1), h5 =
h(0, 1, e2), h6 = h(1, 1, e2), h7 = h(1, 2, e2), and h8 = h(0, 0, e2).

Fix ε ∈ (0, 1)8. Theorem 2.3.3 says that there exist positive constants Mi =
Mi(ε), i = 1, . . . , 8 such that the number of positive nondegenerate solutions of the
polynomial system

γ1
1 x4 + γ1

2 C13 x4x5 + γ1
3 C14 x4x

2
5 − γ1

4 T1 = 0,

γ2
1 x5 + γ2

2 C23 x4x5 + γ2
3 C24 x4x

2
5 − γ2

4 T2 = 0,
(2.3.6)

is at least the number of mixed positively decorated simplices, in this case 3, for
any vector γ = (γ1

1 , γ
1
2 , γ

1
3 , γ

1
4 , γ

2
1 , γ

2
2 , γ

2
3 , γ

2
4) ∈ R8

>0 that satisfies γmi < Mi, for each
i = 1, . . . , 8.

In particular we have the following result:

Proposition 2.3.5. Given positive reactions constants k1, . . . , k6 and positive total
conservations constants T1 and T2, there exist positive constants N1, N2, N3, and
N4 such that for any β1, β2 > 0 satisfying

N1 < β1, N2 < β2,
β2

β1

< N3,
β1

(β2)2
< N4,
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the dynamical system corresponding to the Hybrid Histidine Kinase network (2.1.1)
has at least 3 positive steady states, after replacing k1 by k̄1 = (β1( 1

k1+k2
)− 1

k2
)−1 and

rescaling k̄6 = (β2)−1 k6, without altering the value of the other reaction and total
conservation constants.

Proof. Take any positive vector γ = (γ1
1 , γ

1
2 , γ

1
3 , γ

1
4 , γ

2
1 , γ

2
2 , γ

2
3 , γ

2
4) satisfying γ1

1 =
γ1

2 = γ1
4 ,= γ2

1 = γ2
4 = 1, and γ2

2 = γ2
3 . Call β1 = γ1

3 and β2 = γ2
2 . Then if β1, β2

satisfy

N1 < β1, N2 < β2,
β2

β1

< N3,
β1

(β2)2
< N4,

whereN1 = (min{M1,M2,
k2

k2+k1
})−1, N2 = (min{M6,M7,M8})−1, N3 = min{M3,M4},

and N4 = M5, the system

x4 + C13 x4x5 + β1C14 x4x
2
5 − T1 = 0,

x5 + β2C23 x4x5 + β2C24 x4x
2
5 − T2 = 0,

(2.3.7)

has at least 3 positive solutions. Returning to the original constants, if we keep
fixed k2, k3, k4, k5, T1, T2 and we replace k1, k6 by k̄1 = (β1( 1

k1+k2
) − 1

k2
)−1, and

k̄6 = (β2)−1k6, the positive steady states arising from the network with these con-
stants are the positive solutions of the polynomial system (2.3.7), and so it is multi-
stationary because there are at least 3 positive steady states in a fixed stoichiometric
compatibility class. Observe that k1 is positive because of the choice of N1.

Notice that if the value of β1 in the proof of Proposition 2.3.5 is large enough, k̄1 is
smaller than k3, the necessary and sufficient condition to guarantee multistationarity
that appears in [12].

2.4 Application to n-site phosphorylation systems

In this section, we apply our results to the distributive n-site phosphorylation net-
work (1.2.2) presented in Section 1.3. Recall that the reaction mechanism for the
sequential distributive n-site phosphorylation network is given by the following di-
graph:

S0 + E
kon0−→
←−
koff0

ES0

kcat0→ S1 + E · · · →Sn−1 + E
konn−1−→
←−

koffn−1

ESn−1

kcatn−1→ Sn + E

Sn + F
`onn−1−→
←−

`offn−1

FSn
`catn−1→ Sn−1 + F · · · →S1 + F

`on0−→
←−
`off0

FS1

`cat0→ S0 + F

Also, recall that we denote by s0, . . . , sn, e, f , y0, . . . , yn−1, u0, . . . , un−1 the concen-
tration of the species S0,. . . ,Sn, E, F , ES0, . . . , ESn−1, FS1, . . . , FSn respectively.
The associated dynamical system that arises under mass-action kinetics is equal
to (1.2.3).
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In Section 1.3, we also see that there are three linearly independent conservation
laws for any value of n:

n∑
i=0

si +
n−1∑
i=0

yi +
n−1∑
i=0

ui = Stot, e+
n−1∑
i=0

yi = Etot, f +
n−1∑
i=0

ui = Ftot, (2.4.1)

where the total amounts Stot, Etot, Ftot are positive for any trajectory of the dynam-
ical system starting in the positive orthant. It is straightforward to see from the
differential equations (1.2.3) that the concentrations of the intermediates species at
steady state satisfy the following binomial equations:

yi − Ki esi = 0, i = 0, . . . , n− 1, ui − Li fsi+1 = 0, i = 0, . . . , n− 1, (2.4.2)

where Ki =
koni

koffi
+kcati

and Li =
`oni

`offi
+`cati

for each i = 0, . . . , n− 1 (K−1
i and L−1

i are

usually called Michaelis-Menten constants, i = 0, . . . , n− 1).
Sequential phosphorylation mechanisms are an example of s-toric MESSI net-

works, defined in [86] and presented in Section 1.4 of Chapter 1. In particular, by
Theorem 4.8 in [86] we can find the following binomial equations that describe the
steady states. The whole steady state variety can be cut out in the positive orthant
by adding to the binomials in (2.4.2), the binomial equations:

τisie− νisi+1f = 0,

where τi = kcati
Ki and νi = `cati

Li, for each i = 0, . . . , n − 1. Using these binomial
equations, we can parametrize the positive steady states by monomials. For instance,
we can write the concentration at steady state of all species in terms of the species
s0, e, f :

si = Ti−1
s0ei

f i
, i = 1, . . . , n,

yi = Ki Ti−1
s0ei+1

f i
, i = 0, . . . , n− 1,

ui = Li Ti
s0ei+1

f i
, i = 0, . . . , n− 1,

(2.4.3)

where Ti =
∏i

j=0
τj
νj

for i = 0, . . . , n− 1, and T−1 = 1.

We will use this parametrization in order to apply Theorems 2.2.11 and 2.2.13
to the sequential phosphorylation mechanisms for any n:

Theorem 2.4.1. With the previous notation, assume

Stot > Ftot. (2.4.4)

Then, there is a choice of rate constants for which the distributive n-site phospho-
rylation system is multistationary. More explicitly, for any choice of positive real
numbers kcat1 , `cat1 satisfying

kcat1

`cat1

> max

{
Ftot

Stot − Ftot
,
Ftot
Etot

}
, (2.4.5)

fix any value of the remaining rate constants and positive numbers hi, for i =
4, . . . , 2n+ 3 such that i hn+5 < hi+3 for i = 1, . . . , n, and (i− 1)hn+5 < hn+i+3 for
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i = 1, 3, . . . , n. Then, there exists t0 > 0 such that for any value of t ∈ (0, t0) the sys-
tem is multistationary after the rescalings thn+4 kon0, thn+4+i−hi+3 koni

, i = 1, . . . , n−1,
thn+4+i−hi+4 `oni

, i = 0, . . . , n− 1.
Similarly, for any fixed choice of reaction rate constants and total conserva-

tion constants satysfying (2.4.4) and (2.4.5), there exist positive constants Mi, i =
1, . . . , 4n− 2 such that for any positive values of γi, i = 1, . . . , 2n verifying

γi < Mi, i = 1, . . . , 2n,
γi
γin+2

< M2n+i, i = 1, . . . , n, (2.4.6)

γn+i

γi−1
n+2

< M3n−2+i, i = 3, . . . , n,

the rescaling of the given parameters kon1, koni, i = 2, . . . , n−1, `oni, i = 1, . . . , n−1
by

γn+1 kon1 ,
γn+1+i

γi
koni , i = 2, . . . , n− 1,

γn+1+i

γi+1

`oni , i = 1, . . . , n− 1, (2.4.7)

respectively, gives rise to a multistationary system.

Proof. Previously in this section, we showed that we can write the concentration at
steady state of all species in terms of the species (s0, e, f), as in (2.4.3). We substi-
tute this monomial parametrization of the steady states into the linear conservation
relations (2.4.1). We have a system of three equations and we write it in matricial
form:

C
(
s0 e f s0ef

−1 . . . s0e
nf−n s0ef

0 . . . s0e
nf−(n−1) 1

)t
= 0,

where the matrix C ∈ R3×(2n+4) is the matrix of coefficients:

C =

1 0 0 T0 . . . Tn−1 K0 + L0T0 . . . Kn−1Tn−2 + Ln−1Tn−1 −Stot
0 1 0 0 . . . 0 K0 . . . Kn−1Tn−2 −Etot
0 0 1 0 . . . 0 L0T0 . . . Ln−1Tn−1 −Ftot

 .

If we order the variables in this way: s0, e, f , the support of the system is:

A = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1,−1), (1, 2,−2), . . . , (1, n,−n),

(1, 1, 0), (1, 2,−1), . . . , (1, n,−(n− 1)), (0, 0, 0)}.

We want to find two positively decorated 3-simplices with vertices in A which
share a facet. For example we take the simplices

∆1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)},
∆2 = {(1, 0, 0), (0, 1, 0), (1, 2,−1), (0, 0, 0)}.

They are shown in Figure 2.7, made with Polymake [52], which is a very useful tool
to visualize and to do computations with polytopes and triangulations.



2.4. APPLICATION TO N -SITE PHOSPHORYLATION SYSTEMS 47

(0, 0, 0)

(0, 0, 1)

(1, 0, 0)

(0, 1, 0)

(1, 2,−1)

Figure 2.7: The simplices ∆1 and ∆2.

The simplex ∆1 is automatically positively decorated by C. The simplex ∆2 is
positively decorated by C if and only if:

Etot −
K1T0Ftot
L1T1

> 0, and Stot −
(K1T0 + L1T1)Ftot

L1T1

> 0.

Getting back to the original constants, we can write the previous conditions in
the following form:

Stot > Ftot,

kcat1

`cat1

> max

{
Ftot

Stot − Ftot
,
Ftot
Etot

}
.

(2.4.8)

Suppose that conditions (2.4.8) hold. Then the simplices ∆1 and ∆2 are posi-
tively decorated. Proposition 2.2.6 says that exists a regular triangulation of Γ of
the convex hull of A, such that the two simplices ∆1 and ∆2 are part of that trian-
gulation. Given any height function h inducing such a Γ, by Theorem 2.2.11 there
exists t0 ∈ R>0 such that for all 0 < t < t0, the number of positive nondegenerate
solutions of the scaled system:

th1s0 +
n∑
i=1

Ti−1t
hi+3

s0e
i

f i
+

n−1∑
i=0

(KiTi−1 + LiTi)t
hn+4+i

s0e
i+1

f i
− Stotth2n+4 = 0,

th2e+

n−1∑
i=0

KiTi−1t
hn+4+i

s0e
i+1

f i
− Etotth2n+4 = 0,

th3f +
n−1∑
i=0

LiTit
hn+4+i

s0e
i+1

f i
− Ftotth2n+4 = 0,

(2.4.9)

is at least two, where h1 = h(1, 0, 0), h2 = h(0, 1, 0), h3 = h(0, 0, 1), hi+3 =
h(1, i,−i), for i = 1, . . . , n, hn+3+i = h(1, i,−(i− 1)), for i = 1, . . . , n, and h2n+4 =
h(0, 0, 0).

We can suppose without loss of generality that h1 = h2 = h3 = h2n+4 = 0, and
h(1, 2,−1) = hn+5 > 0. Let ϕ1 and ϕ2 be the affine linear functions ϕ1(x, y, z) = 0
and ϕ2(x, y, z) = −hn+5 z which agree with h on the simplices ∆1 and ∆2 respec-
tively. Then,
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0 < hi+3, ϕ2(1, i,−i) = hn+5 i < hi+3 for i = 1, . . . , n,
0 < hn+3+i, ϕ2(1, i,−(i− 1)) = hn+5(i− 1) < hn+3+i for i = 1, 3 . . . , n, i 6= 2.

Any such choice defines a regular subdivision containing both simplices (and if the
heights are generic the subdivision is a regular triangulation).

If we rescale the following constants:

thn+4 K0, thn+4+i−hi+3 Ki, i = 1, . . . , n− 1, (2.4.10)

thn+4+i−hi+4 Li, i = 0, . . . , n− 1,

and we keep fixed the values of the constants kcat1 and `cat1 and the total values
Etot, Ftot, and Stot (such that (2.4.8) holds), the dynamical system obtained from the
network with these constants is the system (2.4.9). And then, for these constants
the network has at least two positive steady states. Moreover, it is straightforward
to check that it is enough to rescale the following original constants as indicated in
the statement:

thn+4 kon0 , thn+4+i−hi+3 koni
, i = 1, . . . , n− 1, (2.4.11)

thn+4+i−hi+4 `oni
, i = 0, . . . , n− 1,

to get the equalities (2.4.10).
The last part of the statement follows with similar arguments via Proposi-

tion 2.2.12 and Theorem 2.2.13.

Remark 2.4.2. Using a parametrization of the concentrations of the species at
steady state in terms of other variables (or with another choice of the simplices) we
can obtain other regions in the parameters space that guarantee multistationarity .

2.5 Results for MESSI Systems

In order to apply our method in Section 2.2 to determine a multistationarity region
for the network (2.1.1) or in Section 2.4 for the distributive multisite phosphory-
lation systems, we proposed and replaced a rational parametrization of the steady
state variety into a basis of the conservation relations, and we then had to rescale
some of original parameters at the end of the procedure (as in (2.4.11), (2.4.7)).
Our main result in this section is Theorem 2.5.2, which guarantees that the rescaling
of the parameters can be done for any s-toric MESSI system, together with Propo-
sition 2.5.1 which ensures and describes the existence of a rational parametrization
of the steady state variety.

2.5.1 Existence of rescalings

The following proposition summarizes some results of [86] and describes the con-
servation laws as well as the existence of a positive parametrization of the positive
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steady states. By a positive parametrization of the variety V of positive steady
states we mean a C1 and bijective function

φ : Rm
>0 → V ∩ Rs

>0,

x̄ = (x̄1, . . . , x̄m) 7→ (φ1(x̄), . . . , φs(x̄)),

for some m < s. Proposition 2.5.1 also features the form of the system when we re-
place the concentration at steady state of the species by its parametrization into the
conservation laws, which is our procedure when we apply our results to the question
of determining regions of multistationarity of biochemical reaction networks.

Proposition 2.5.1. Let G be the underlying digraph of a MESSI system with fixed
reaction rate constants κ. Consider a minimal partition of the set of species as in
(1.4.1) and the associated digraphs G2 and GE defined in Section 1.4 of Chapter 1.
Suppose that the system is s-toric, GE has no directed cycles and assume that any
pair of nodes in the same connected component of G2 are connected by a unique
simple path.1

Choose m species Xi1 , . . . , Xim, such that Xiα ∈ S (α) for α = 1, . . . ,m. Then,
there exists an explicit basis of m conservation laws with coefficients 0, 1 and a
positive monomial parametrization of the positive steady states in terms of the m
concentration variables xi1 , . . . , xim. Moreover, if we replace the concentrations of
the species by its parametrization in these conservations laws we obtain a system of
the form:

`α(x, κ) :=
n∑
j=1

ϕα,j(κ)xaj = Tα, α = 1, . . . ,m, (2.5.1)

where x = (xi1 , . . . , xim), with aj ∈ Zm − {0} for each j = 1, . . . , n, for some
constants Tα which are positive for any trajectory that starts in the positive orthant
for each α = 1, . . . ,m. Here ϕα,j(κ) is a positive rational function in the reaction
rate constants for each α = 1, . . . ,m and j = 1, . . . , n.

Now, we state the main result of this section, which guarantees that the rescaling
of the original parameters κ can always be done in our setting. Its proof can be
implemented as an algorithm.

Theorem 2.5.2. Let G be the underlying digraph of a MESSI system. Consider
a minimal partition of the set of species, and the associated digraphs G2 and GE

defined as before. Suppose that the system is s-toric, GE has no directed cycles and
assume that any pair of nodes in the same connected component of G2 are connected
by a unique simple path. Fix m species Xi1 , . . . , Xim, such that Xiα ∈ S (α) for
α = 1, . . . ,m and consider the parametrization and the system (2.5.1) obtained in
Proposition 2.5.1.

1A simple path is a path that visits each vertex exactly once.
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Given γ ∈ Rn+1
>0 , reaction rate constants κ and total conservation constants Tα >

0, there exists a choice of positive reaction rate constants κ̄ such that the positive
solutions of the system

n∑
j=1

γjϕα,j(κ)xaj − γn+1Tα = 0, α = 1, . . . ,m, (2.5.2)

are in bijection with the positive solutions of

`α(x, κ̄)− Tα =
n∑
j=1

ϕα,j(κ̄)xaj − Tα = 0, α = 1, . . . ,m. (2.5.3)

Moreover, the reaction rate constants κ̄ can be obtained from the original constants κ
by scaling only the rate constants of those reactions coming out from a core complex.

The proofs of these two results are given below. First, we show in the net-
work of Example 1.4.2 in Chapter 1, which parameters we rescale in the proof of
Theorem 2.5.2.

Example 2.5.3 (Example 1.4.2, continued). It is easy to check that the network of
Example 1.4.2 with the MESSI structure defined before is an s-toric MESSI system
and satisfies the hypotheses of Theorem 2.5.2. In the proof of this theorem, we
show that it is sufficient to rescale the parameters k1, k4, and k7, which are the rate
constants of reactions coming out from the core complexes S0 + E, S1 + E, and
S2 + F respectively.

We need to introduce the following sets, defined in the proof of Theorem 3.15 of
[86].

Definition 2.5.4. Let G be the underlying digraph of a MESSI system. Consider a
minimal partition of the set of species as in (1.4.1) and the associated digraph GE.
We define the following subsets of indices:

L0 ={β ≥ 1 : indegree of S (β) is 0}, and for k ≥ 1 :

Lk ={β ≥ 1 : for any edge S (γ) → S (β) in GE it holds that γ ∈ Lt, with t < k}\
k−1⋃
t=0

Lt.

Example 2.5.5 (Example 1.4.2, continued). The subsets Lk, k ≥ 0 of Defini-
tion 2.5.4 for the network of Example 1.4.2 with the MESSI structure defined before
are: L0 = {1, 2} and L1 = {3} (see the corresponding digraph GE at Figure 1.4).

2.5.2 The proofs

We will need a series of remarks and technical lemmas in order to prove our main
result Theorem 2.5.2 that ensures that the general method developed in Section 2.3
can be applied to the determination of regions of multistatinarity for any s-toric
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MESSI system. We introduce new ideas, but unluckily our results lie heavily on the
machinery developed in [86] and they require the reader to consult that paper. We
will need some combinatorial definitions that we will recall succintly.

We first give the proof of Proposition 2.5.1.

Proof of Proposition 2.5.1 . Suppose that we have a minimal partition of the set of
species as in (1.4.1). We will use the following notation for the intermediate species:
S (0) = {U1, . . . , Up}. With our assumptions, the hypotheses of Theorem 3.2 in [86]
are satisfied, then there exist m conservation laws of the form

`α(u,x) = Tα, where `α(u,x) =
∑

Xj∈S (α)

xj +
∑

k∈Int(α)

uk, α = 1, . . . ,m, (2.5.4)

for some constants Tα, which are positive if the trajectory intersects the positive
orthant for each α = 1, . . . ,m, where x and u denote the vector of variables corre-
sponding to the concentration of core species and intermediate species respectively,
and where Int(α) ⊂ {1, . . . , p} is the following set of indices:

Int(α) = {k : ∃ y →◦ Uk, with y core complex with one species belonging to S (α)}.

Because the system is an s-toric MESSI system, by Proposition 4.7 of [86], we can
obtain the concentration of the intermediate species at steady state in terms of the
concentrations of the core species. That proposition states that there are (explicit)
rational functions µk(κ) ∈ Q(κ), 1 ≤ k ≤ p (as in (2.5.11)) such that at steady state:

uk(x) = µk(κ)xy, k = 1, . . . , p, (2.5.5)

where y is the unique core complex reacting through intermediates to Uk (here
we identify the complex y with the corresponding vector in Zs≥0). Note that the
expressions µk(κ) are the same as in (1.3.3), introduced in Theorem 2 in [42], and
that we presented in Section 1.3. Also, as G2 is weakly reversible and GE has no
direct cycles, we can apply Theorem 4.1 of [86] to obtain a rational parametrization
of the concentration of the core species. Consider the subsets Lk, k ≥ 0 as in
Definition 2.5.4. Observe that the set L0 is not empty because GE has no direct
cycles. Fix xiα ∈ S (α) for each α = 1, . . . ,m. In the proof of Theorem 4.1 of [86] it
is shown that we can then parametrize all the species of S (α) for α ∈ Lk in terms
of xiα , species corresponding to core subsets in Lt with t < k and the rate constants
τ (defined in (1.3.4)), which are rational functions of the reaction rate constants κ.
Under the assumption that any pair of nodes in the same connected component of
G2 is connected by a single simple path, we can show that this parametrization is a
positive monomial parametrization, using Theorem 4.8 of [86].

Then, the concentration of a core species at steady state can be written as a
monomial in terms of the variables xiα , for α = 1, . . . ,m and the rate constants κ,
and using this and (2.5.5), the same holds for any intermediate species. We denote by
{a1, . . . , an} the different monomials that appear in this monomial parametrization.
We replace this parametrization in the conservations laws (2.5.4) and we get a system
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as in (2.5.1), where ϕα,j(κ) is the sum of the coefficients in the parametrization of the
species that appear in the α-th conservation law and have the monomial xaj , that
is, ϕα,j(κ) is a positive rational function depending on the reaction rate constants
κ.

In order to prove Theorem 2.5.2 we need some lemmas. The following lemma
shows how the values of τ(κ) and µk(κ) for k = 1, . . . , p, depending on the reaction
rate constants κ, are modified if we consider new rate constants κ̄ obtained from κ
after scaling by a positive number all constants in a reaction coming out from a core
complex.

Lemma 2.5.6. Let G be the underlying digraph of an s-toric MESSI system, with
reaction rate constants κ, µk(κ) as in (2.5.5). Fix `y ∈ R>0 for each y core complex.
Consider the following reaction rate constants κ̄ obtained from the rate constants κ:

κ̄yy′ =

{
`yκyy′ if y is a core complex,
κyy′ if y is not a core complex.

(2.5.6)

That is, we multiply the reactions rate constants coming out from a core complex (we
multiply by `y if the core complex is y) and we keep fixed the other rate constants (the
constants coming out from an intermediate complex). Then, for each k = 1, . . . , p
we have

µk(κ̄) = `yµk(κ) if y is the unique complex core such that y →◦ Uk. (2.5.7)

Consequently, if y
τ−→ y′ is in G1, then

τ(κ̄) = `yτ(κ). (2.5.8)

Proof. Following the proofs of Proposition 4.7 in [86] and Theorem 2 in [42], we
recall how to obtain the constants µk(κ) for fixed reaction rate constants κ. They

build a new linear labeled directed graph Ĝ with node set S (0)∪{∗}, which consists
of collapsing all core complexes into the vertex ∗, and labeled directed edges that are
obtained from hiding the core complexes in the labels. For example, Xi +Xj

κ→ Uk

becomes ∗ κxixj−→ Uk and Uk
κ′→ Xi +Xj becomes Uk

κ′−→ ∗.
They show, using the Laplacian of a graph and the Matrix-tree Theorem (see

[79, 104]), that
µk(κ) = ρk/ρ,

for any k = 1, . . . , p, where

ρk =
∑

T an Uk−tree

cT , ρ =
∑

T an ∗−tree

cT .

It is easy to check that every ∗-tree involves labels in Q[κ], and only labels from
edges coming out from an intermediate complex. As the system is s-toric, for every
intermediate complex formed with the intermediate species Uk, there is a unique
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core complex y such that y →◦ Uk. Then, every Uk-tree involves labels in terms of
κ and the concentrations of the species that form y. Moreover, as there must be a
path from ∗ to Uk in each Uk-tree, then, a label from an edge coming out from y
necessarily appears in each tree (and is the unique label from an edge coming out
from a core complex). Then, if we consider the constants κ̄, each label from an edge
coming out from y is multiplied by `y and then µk(κ̄) = `yµk(κ) if y →◦ Uk, as
wanted. The expression of the constants τ(κ̄) follows from (1.3.4).

In the following lemma we give in more detail the form of the positive parametriza-
tion given in Proposition 2.5.1.

Lemma 2.5.7. With the hypotheses of Theorem 2.5.2, fix Xi1 , . . . , Xim species as in
Proposition 2.5.1, with Xiα ∈ S (α), for each α = 1, . . . ,m. Take any other species
Xi ∈ S (α) with α ∈ Lk, Xi 6= Xiα, with Lk as in Definition 2.5.4. Then, the
concentration at steady state of Xi in terms of xi1 , . . . , xim can be expressed in the
form:

xi = φ(τ)xiα x
a, (2.5.9)

for some φ(τ) ∈ Q(τ), where xa is a monomial that depends only on variables xiβ
with β ∈ Lt, with t < k. Moreover, φ(τ) has the form

φ(τ) =

(
q∏
j=1

τj,1
τj,2

)
g(τ ′) (2.5.10)

for some q ≥ 1, where g(τ ′) is a rational function of the constants τ ′, with τ ′ the label
of edges of connected components of G2 corresponding to S (β), with β ∈ Lt, with
t < k, and τj,1, τj,2 label of edges of the connected component of G2 corresponding to
S (α), for each j = 1, . . . , q.

Proof. We have that any pair of nodes in the component of G2 corresponding to
S (α) are connected by a unique simple path. Then, two different (simple) cycles
can only share a node in common (if there are two nodes in common, there will be
more than a single path connecting one of the nodes to the other, a contradiction).
For each species Xj ∈ S (α), we consider the set of cycles in the subgraph G2 that
have Xj as a node, that is:

C(Xj) = {C : C is a (simple) cycle with Xj a node of C}.

Observe that these sets are nonempty because G2 is weakly reversible by hypothesis.
Now, we define the following subsets of S (α).

N0 ={Xiα},

Nq ={Xj ∈ S (α) : Xj ∈ C, for some C ∈ C(Xj′), with Xj′ ∈ Nq−1}\
q−1⋃
t=0

Nt, q ≥ 1.

Suppose that Xi ∈ Nq, for some q ≥ 1. By hypothesis, there is a unique sim-
ple path between two nodes species in S (α), so there exist unique species Z0 =
Xiα , Z1, . . . , Zq = Xi, such that Zj ∈ C(Zj−1), for j = 1, . . . , q.
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Then, there exist q cycles in G2:

Z0 · · · Z1

· · ·

· · · Z2

· · ·
· · ·

Zq−1 · · ·

· · ·

Zq

each one of the form:

Zj−1 · · · Zj

· · ·

τj,1xhj,1

τj,2xhj,2

where xhj ,1, xhj ,2 are the concentrations of species in core subsets belonging to Lt
for t < k or are equal to 1. Following the proof of Theorem 4.8 of [86], we have that
at steady state:

τj,1xhj,1zj−1 = τj,2xhj,2zj,

for each j = 1, . . . , q. From all these equations, we have that:

xi = zq =

(
q∏
j=1

τj,1
τj,2

)(
q∏
j=1

xhj,1
xhj,2

)
xiα .

Using a recursive argument for the variables xhj ,1, xhj ,2 , we obtain what we wanted.

In the proof of Theorem 2.5.2 we will show how to modify the rate constants
coming out from core complexes. If the digraph GE has no directed cycles, we can
consider the sets Lk, k ≥ 0 as in Definition 2.5.4. Given k ≥ 1 and α ∈ Lk, we
denote by Yα the set of reactant2 core complexes which consist only of one species
of S (α) or which consist of one species of S (α) and one species in a core subset with
index in Lt with t < k.

If G2 is weakly reversible, for each y ∈ Yα, there exist at least one simple cycle

C in G2 that contains an outgoing edge of the form Xi
τxj−−→ if y = Xi + Xj or an

edge of the form Xi
τ−→ if y = Xi, where Xi ∈ S (α). In this case, we say that the

complex y appears in the simple cycle C. We define the following subsets of Yα.

Definition 2.5.8. Assume G is the underlying digraph of a MESSI system satisfying
the hypotheses of Theorem 2.5.2; in particular, we fix Xiα ∈ S (α) for each α =
1, . . . ,m. Let Nq and C(Xj) defined as in the proof of Lemma 2.5.7. For any k ≥ 1

2Recall that a reactant complex y is a complex for which exists a reaction y → y′.
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and α ∈ Lk, we define the following subsets of Yα:

M0 ={y ∈ Yα : one species of y is Xiα},
M ′0 ={y ∈ Yα : y appears in C with C ∈ C(Xiα)}\M0, and for q ≥ 1 :

Mq ={y ∈ Yα : one species of y belongs to Nq}\
q−1⋃
t=0

(Mt ∪M ′t),

M ′q ={y ∈ Yα : y appears in C with C ∈ C(Z), for some Z ∈ Nq})\(
q−1⋃
t=0

(Mt ∪M ′t) ∪Mq).

We clarify in our example the previous definitions.

Example 2.5.9 (Example 1.4.2, continued). Consider the network and its MESSI
structure of Example 1.4.2. Choose the species S0 ∈ S (3). Looking at the connected
component corresponding to S (3) in the digraph G2 in Figure 1.4, the sets Nq that
appear in the proof of Lemma 2.5.7 are: N0 = {S0}, N1 = {S1, S2}. The set C(S0)
consists only of the simple cycle:

S0 S1 S2

eτ1 eτ2

fτ3

The set Y3 is {S0 + E, S1 + E, S2 + F}. The sets Mq of Definition 2.5.8 are: M0 =
{S0 +E}, M ′

0 = {S1 +E, S2 + F} (the complexes S1 +E and S2 + F appear in the
the previous cycle of C(S0)).

Now we are ready to present the proof of Theorem 2.5.2.

Proof of Theorem 2.5.2. We can suppose without loss of generality that the coef-
ficient γn+1 in the system (2.5.2) is equal to 1; if not, we divide each equation by
γn+1 and we obtain new values of γ for each monomial. Note that xiα is one of the
monomials that appears in the system (2.2.11) for all α = 1, . . . ,m. We can suppose
that the corresponding multiplier γα of xiα in system (2.2.11) is equal to 1 for all α.
Otherwise, we change the variables

γαxiα = x̄iα .

In this case, we get a system with new values of the vector γ, in which the positive
solutions are in bijection with the positive solutions of system (2.5.2).

With these assumptions, we assert that we can transform system (2.5.2) into
system (2.5.3), just rescaling the rate constants of reactions coming out from a core
complex, in a certain order, multiplying each one by an appropriate constant. We
consider the sets Lk, as in Definition 2.5.4. Recall that L0 is no empty because GE

has no direct cycles. Because the partition is minimal the subsets of core species
S (α) are in bijection with the connected components of G2 and the set of nodes of
the corresponding component equals S (α).
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Let S (α) ∈ L0. We showed in Lemma 2.5.7 that all the core species in S (α)

can be written in terms of the monomial xiα , reaction rate constants and no other
variables. If an intermediate complex has its unique core complex reacting to it
via intermediates formed with species only in S (α), then the concentration of the
corresponding intermediate species also depends only on xiα and reaction rate con-
stants. That is, all the concentrations of these species have xiα as the corresponding
monomial in the parametrization. We supposed that in system (2.5.2) the monomial
xiα is multiplied by γα = 1, then, there is nothing to rescale.

Now we proceed recursively. Fix k ≥ 1. Suppose that we have already rescaled
properly the reaction rate constants of edges coming out from core complexes whose
parametrizations depends only on variables xiβ with β ∈ Lt, with t < k. Fix one

core subset S (α), with α ∈ Lk. We will show how to rescale the rate constants of
reactions coming out from complexes in the set Yα, defined above.

The digraph G2 is weakly reversible, then we can consider the sets Mq,M
′
q, q ≥ 0,

as in Definition 2.5.8. We are going to rescale the rate constants of reactions coming
out from a complex in M0, then in M ′

0, then in M1 and so on, in that order. First,
we show how to modify the constants of reactions coming out from a complex in M0.
Because the system is s-toric, each intermediate complex has a unique core complex
reacting through intermediates to it. We consider the intermediates complexes such
the unique core complex reacting through intermediates to it is in M0 or in M ′

0

(if there is no one, we don’t rescale anything). Suppose then that there is one
intermediate complex formed by an intermediate species U` such that y →◦ U`, with
y ∈M0 or y ∈M ′

0. If the core complex y ∈M0, then y = Xiα or y = Xiα +Xj, with
Xj in a core subset belonging to Lt, with t < k. If y = Xi, the concentration of Uk
is u` = µ`(κ)xiα , with µ` as in (2.5.11), and we are assuming that the monomial xiα
is multiplied by γα = 1. If y = Xiα +Xj, then we can write:

u` = µ`(κ)xiαxj.

Now, xj is a concentration of a core species and its parametrization can be written
in terms of core species of subsets in the partition with indices in Lt, with t < k and
reaction rate constants τ ′(κ), with τ ′(κ) labels of edges of connected components
of G2, corresponding to core subsets with indices in Lt, with t < k. We write
xj = g(τ ′(κ))xa, with xa a monomial in these other species and g a rational function,
and we get:

u` = µ`(κ)g(τ ′(κ))xaxiα .

Suppose that the monomial xaxiα appears in system (2.5.2) multiplied by γ. Then,
we want new reaction rate constants κ̄ such that:

γµ`(κ)g(τ ′(κ)) = µ`(κ̄)g(τ ′(κ̄)). (2.5.11)

To ease the notation, we denote µ` = µ`(κ), τ ′ = τ ′(κ), µ̄` = µ`(κ̄), τ̄ ′ = τ ′(κ̄)
(and we will denote with a bar the constants depending on κ̄ and without a bar,
the constants depending on κ). The constants τ ′ have been modified previously by
hypothesis (note that a constant τ can only appear in one edge of G2, because of the
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condition that GE has no cycles) and replaced by the constants τ̄ ′. It is clear that
we can do the rescaling: it is enough to multiply each reaction constant of reactions
coming out from the core complex y by the constant: γ g(τ

′)
g(τ̄ ′)

. Then, by Lemma 2.5.6,

we obtain the equality (2.5.11). Now, if y ∈ M ′
0, y appears in C with C ∈ C(Xiα).

Then, y = Xi or y = Xi +Xj′ , with C of the form

Xiα · · · Xi

· · ·

τ1xj

τ2xj′

where xj′ is the concentration of Xj′ or is equal to 1 (if y = Xi), and similarly for
xj. Then, we have at steady state:

u` = µ` xi xj′ = µ`
τ1

τ2

xiα xj.

That is, u` depends on the concentrations of the species of the complex Xiα + Xj,
which belongs to M0. We then modify the reaction rate constants coming out of
Xiα +Xj multiplying it by an appropiate constant in a similar way as we did in the
previous case, looking at the value of γ that appears in the corresponding monomial
(note that if we modified these constants before, the previous rescaling also works for
this case). Note that when later we modify the constants of the complex y = Xi+Xj′

which belongs to M ′
0 (we will see how to do this), the rescaling will be coherent.

That is, if we multiply the constants of each reaction coming out from Xiα +Xj by
ν1, and the constants coming out from y by ν2 the rescaling will be coherent if we
have:

µ̄`
τ̄1

τ̄2

= ν1 µ`
τ1

τ2

,

but this holds by Lemma 2.5.6:

µ̄`
τ̄1

τ̄2

= ν2 µ`
ν1 τ1

ν2 τ2

= ν1 µ`
τ1

τ2

,

where µ̄`, τ̄1, τ̄2 denotes the values of the functions µ`, τ1, τ2 corresponding to the new
constants κ̄. We modify all the reactions rate constants coming out of complexes
y belonging to M0 in this way: looking at intermediates complexes U` such that
y →◦ U` or y′ →◦ U`, with y′ ∈ M ′

0 and such that in the parametrization of the
intermediate species appears the monomial corresponding to the complex y. If there
is no such intermediate complex we multiply the constants by 1. Also, we observe
that with this rescaling, we modified all the constants τ that label an edge in G2 of

the form Xiα

τxj−−→.
Now, we show how to rescale the constants of complexes in M ′

0. Let y ∈ M ′
0,

then y = Xi or y = Xi + Xj′ and we have a cycle as we showed previously in this
proof. By Lemma 2.5.7, the concentration xi is of the form

xi =
τ1

τ2

g(τ ′)xaxiα ,
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where τ ′ are labels of edges of connected components of G2, corresponding to core
subsets belong to Lt, with t < k, g(τ) a rational form and xa a monomial in variables
in core subsets belong to Lt, with t < k. The constant τ1 and the constants τ ′ have
been already modified by the constants τ̄1 and τ̄ ′ respectively. It is clear that we can
do the rescaling if we modify τ2. If γ is the constant that multiplies the monomial
xaxiα in system (2.5.2), we want

γ
τ1

τ2

g(τ ′) =
τ̄1

τ̄2

g(τ̄ ′),

and we get this equality if we multiply each rate constant of a reaction coming
out from y by the constant τ̄1g(τ̄ ′)

γτ1g(τ ′)
and we apply Lemma 2.5.6. We do this for all

complexes in M ′
0.

We proceed recursively rescaling the remaining constants of reactions coming
out from complexes in Mq, and then from M ′

q, for each q. We first modify the
constants of complexes in Mq, by looking at the parametrization of intermediate
species as we did when we showed how to rescale the constants of reactions coming
out from complexes in M0. After that, we modify the constants of complexes in M ′

q

by looking the concentration of the core species in S (α) that appear in the complex,
as we did for the complexes in M ′

0. Then, we can rescale all the complexes of Yα,
for all α ∈ Lk. We can proceed for all k, k ≥ 1, in order, and then we are done.

Example 2.5.10. For the distributive multisite phosphorylation systems showed in
Section 2.4 the hypotheses in Theorem 2.5.2 are satisfied. A MESSI structure of the
network for the double phosporylation (n = 2) is given by this minimal partition of
the species:

S (0) = {ES0, ES1, FS1, FS2} (the intermediate species), S (1) = {E}, S (2) =
{F}, and S (3) = {S0, S1, S2}.

The digraphs G1, G2, and GE are depicted in Figure 2.8. It is easy to check
the conditions of Theorem 2.5.2 in this case. Following the proof of this theorem,
we can show which parameters are sufficient to rescale. For this case is sufficient to
modify kon0 , kon1 , `on0 , and `on1 , the rate constants of reactions coming out of core
complexes.

S0 + E
τ0→ S1 + E

τ1→ S2 + E

S2 + F
ν1→ S1 + F

ν0→ S0 + F

G1

S0

eτ0
�
fν0

S1

eτ1
�
fν1

S2

E F

G2

S (1) S (3)

S (2)

GE

Figure 2.8: The digraphs G1, G2, and GE of the double phosphorylation network.



Chapter 3

Regions of multistationarity in
cascades of Goldbeter-Koshland
loops

Signal transduction is the process through which cells communicate with the external
environment, interpret stimuli and respond to them. This mechanism is controlled
by signaling cascades. Classical signaling pathways typically contain a cascade of
phosphorylation cycles where the activated protein in one layer acts as the modifier
enzyme in the next layer. An example of signaling cascades is the Ras cascade
(see Figure 3.1, as it is usually depicted in the biochemistry literature), which is an
important signaling pathway in mitogen-activated protein kinases (MAPKs). This
cascade reaction activates transcription factors and regulates gene expression. The
Ras signaling pathway has a significant role in the occurrence and development of
diseases such as cancer [73] or developmental defects [57]. One key property is the
occurrence of multistability, which triggers different crucial cellular events. A basic
condition for these different cellular responses is the emergence of multistationarity.

In this chapter, we use tools from real algebraic geometry based on the re-
sults of Chapter 2, to analyze multistationarity in cascades of enzymatic Goldbeter-
Koshland loops. A second important ingredient is the observation that enzymatic
cascades have the structure of MESSI systems introduced in [86], and presented in
Section 1.4, from which an explicit parametrization of the steady states can be ob-
tained, even in presence of multistationarity. We show how to deform a given set of
parameters of the model to produce multistationarity, including both the reaction
rate constants and the total concentration constants. Moreover, we identify open
sets where multistationarity occurs in the space of all these parameters.

In Section 3.1 we apply our method to an enzymatic cascade with two layers
and in Section 3.2 we work with the general case of n layers and present our main
results of this chapter (Theorems 3.2.1 and 3.2.3.) In this case, the associated
polynomial systems have positive dimensions growing linearly with n. The number of
conservation relations (and then of total conservation constants) also grows linearly
with n, and it is at least four if n ≥ 2. Such systems were studied in [11, 38] when

59
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Ras
Raf

MEK
ERK

Figure 3.1: The Ras pathway.

all the enzymes are different, in which case there cannot be more than one positive
steady state. This fact is proved in [38] and also is a particular case of a more
general result in [3], in which the authors work with a more general structure: tree
networks of Goldbeter-Koshland loops. In the case of two layers (see Figure 3.2),
it was shown in [40] that if the same phosphatase is acting at both layers, then
the network has the capacity for multistationarity. It can be deduced from the
results in [2], that if there are any number of layers, and the last two share a
phosphatase, multistationarity parameters for the case n = 2 can be extended to
produce multistationarity parameters in the general case.

(A)

S0
2 S1

2

F

S0
1 S1

1

F

E

(B)

S0
2 S1

2

F2

S0
1 S1

1

F1

E

Figure 3.2: Same and different phosphatases in a 2-layer cascade of GK-loops.

Our results can be generalized to describe multistationarity regions for other ar-
chitectures of cascades which define MESSI systems. For this purpose, in Section 3.3
we present some general results that are the basis for some of our arguments. We
state and prove the extension Theorem 3.3.3, that abstracts some of our computa-
tions in Section 3.2, which could be combined with the general results in Section 2.5
of Chapter 2. For example, in the case of the Ras cascade in Figure 3.1, previ-
ous papers studied rate constant multistationarity parameters (see e.g. [13, 88]).
Our methods yield multistationarity regions for this signaling pathway in terms of
rate constants and total concentration parameters. We omitted these computations,
because they are similar to the ones we detail in Sections 3.1 and 3.2.

We expect that our methods can be applied to study other chemical reaction
networks of interest, not only to find multistationarity regions but also to find regions
of parameters that ensure several positive steady states in a same stoichiometric
compatibility class.
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3.1 Enzymatic cascades with two layers

In this section we work with the case of an enzymatic cascade with two layers, and
then in Section 3.2 we will work with the general case. The network involves two
phosphorylation cycles. We call S1 and S2 the substrate proteins in the first and
second layers respectively. The upper index can be interpreted as the absence (0)
or the presence (1) of a phosphate group. The phosphorylation in the first layer is
catalyzed by the enzyme E. The activated protein S1

1 in the first layer acts as the
modifier enzyme in the second layer, which is depicted in (A) in Figure 3.2. Note
that the dephosphorylation is carried out by the same phosphatase F , which as we
pointed out before, gives the capacity for multistationarity to the network by [40].
The kinetics is deduced by applying the law of mass-action to the following chemical
reaction network:

S0
1 + E

kon1−→
←−
koff1

Y 0
1

kcat1→ S1
1 + E S0

2 + S1
1

kon2−→
←−
koff2

Y 0
2

kcat2→ S1
2 + S1

1 (3.1.1)

S1
1 + F

`on1−→
←−
`off1

Y 1
1

`cat1→ S0
1 + F S1

2 + F
`on2−→
←−
`off2

Y 1
2

`cat2→ S0
2 + F.

We denote by Y 0
1 , Y 0

2 , Y 1
1 , Y 1

2 the intermediate complexes, which consist of a
single chemical species formed by the union of the substrate with the enzyme. The
concentrations of the species will be denoted with small letters, for example s0

1 will
denote the concentration of S0

1 . The associated dynamical system that arises under
mass-action kinetics equals:

ds0
1

dt
=−kon1s

0
1e+ koff1y

0
1 + `cat1y

1
1,

dy1
1

dt
=`on1s

1
1f − (`off1 + `cat1)y1

1,

ds1
1

dt
=kcat1y

0
1 − `on1s

1
1f + `off1y

1
1

dy0
2

dt
=kon2s

0
2s

1
1 − (koff2 + kcat2)y0

2,

+kon2s
0
2s

1
1 + (koff2 + kcat2)y0

2,
dy1

2

dt
=`on2s

1
2f − (`off2 + `cat2)y1

2,

ds0
2

dt
=−kon2s

0
2s

1
1 + koff2y

0
2 + `cat2y

1
2,

de

dt
=− kon1s

0
1e+ (koff1 + kcat1)y0

1,

ds1
2

dt
=kcat2y

0
2 − `on2s

1
2f + `off2y

1
2,

df

dt
=− `on1s

1
1f + (`off1 + `cat1)y1

1

dy0
1

dt
=kon1s

0
1e− (koff1 + kcat1)y0

1, − `on2s
1
2f + (`off2 + `cat2)y1

2.

In this case, there is a basis of the conservation laws given by the four linear
equations:

e+ y0
1 =Etot,

f + y1
1 + y1

2 =Ftot, (3.1.2)

s0
1 + s1

1 + y0
1 + y1

1 + y0
2 =S1,tot,

s0
2 + s1

2 + y0
2 + y1

2 =S2,tot.
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Enzymatic cascades are an example of s-toric MESSI networks. By Theorem
4.8 in [86] we can find binomial equations that describe the steady states. This is a
general procedure, that in this case is easily obtained by manipulating the differential
equations. First, the concentrations of the intermediates species y0

1, y
1
1, y

0
2, y

1
2 at

steady state satisfy the following binomial equations:

y0
1 − K1 es

0
1 = 0, y1

1 − L1 fs
1
1 = 0, (3.1.3)

y0
2 − K2 s

1
1s

0
2 = 0, y1

2 − L2 fs
1
2 = 0,

where K1 =
kon1

koff1
+kcat1

, K2 =
kon2

koff2
+kcat2

, L1 =
`on1

`off1
+`cat1

and L2 =
`on2

`off2
+`cat2

. The

whole steady state variety can be cut out in the positive orthant by adding to the
binomials in (3.1.3), the following binomial equations:

τ1 s
0
1 e− ν1 s

1
1 f = 0, τ2 s

0
2 s

1
1 − ν2 s

1
2 f = 0,

where τ1 = kcat1 K1, τ2 = kcat2 K2, ν1 = `cat1 L1 and ν2 = `cat2 L2.
Therefore, we can parametrize the positive steady states by monomials. For in-

stance, we can write the concentration at steady state of S0
1 , S

0
2 and the intermediate

species, in terms of the concentration of the species E,F, S1
1 , S

1
2 :

s0
1 = G1

s1
1 f

e
, y0

1 = K1G1 s
1
1 f, y1

1 = L1 s
1
1 f, (3.1.4)

s0
2 = G2

s1
2 f

s1
1

, y0
2 = K2G2 s

1
2 f, y1

2 = L2 s
1
2 f,

where G1 = ν1

τ1
and G2 = ν2

τ2
.

Now, we apply our results to this case. Denote by

A1 =
`cat1

kcat1

, A2 =
`cat2

kcat2

, (3.1.5)

and assume that S1,tot, S2,tot, Etot, Ftot > 0. Consider the following rational functions
α1, α2, α3, α4 depending on the catalytic reaction rate constants and total concen-
tration constants:

α1 =
S1,tot

Ftot
−A2,

α2 =(A1 + 1)− S1,tot

Ftot
,

α3 =
A1 + 1−A2

A1

Etot
Ftot

−
(
S1,tot

Ftot
−A2

)
,

α4 =
A1 + 1−A2

A2 + 1

S2,tot

Ftot
−
(
A1 + 1− S1,tot

Ftot

)
.

We then have:

Theorem 3.1.1. Consider the enzymatic cascade with two layers with digraph as
in (3.1.1) and let A1, A2 as in (3.1.5). Assume that the reaction rate constants
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satisfy A1 + 1 > A2 and the total concentration constants satisfy the inequalities
α1, α2, α3, α4 > 0, that is:

A1 + 1 >
S1,tot

Ftot
> A2,

Etot
Ftot

>

(
S1,tot

Ftot
−A2

)
A1

A1 + 1−A2
,

S2,tot

Ftot
>

(
A1 + 1− S1,tot

Ftot

)
A2 + 1

A1 + 1−A2
,

or instead, that A1 + 1 < A2 and α1, α2, α3, α4 < 0.
Fix generic positive numbers h2, h3, h7, h8 such that h8 < h2. Then, there exists

t0 > 0 such that for any value of t ∈ (0, t0) the system has at least two positive steady
states after modifying the coefficients kon1 , kon2 , `on1 , `on2 via the rescaling t−h7kon1,
t−h3−h8kon2, t−h2−h3`on1 and t−h2`on2.

Also, for any fixed choice of reaction rate constants and total concentration con-
stants lying in the open set defined by one of the previous set of inequalities, there
exist positive constants M1, . . . ,M6 such that for any values of β1, β2, η1, η2 satisfy-
ing

1

η2
< M1,

η2

η1
< M2,

1

β1
< M3,

η1

η2β2
< M4,

β2

η1
< M5,

1

β2
< M6, (3.1.6)

the rescaling of the given parameters kon0, kon1, `on0 and `on1 by β1kon1, β2kon2, η1`on1

and η2`on2 respectively, gives rise to a multistationary system.

Proof. We substitute the monomial parametrization of the steady states in terms
of the concentrations e, f, s1

1, s
1
2 (3.1.4) into the linear conservation relations (3.1.2).

We write this system in matricial form:

C
(
e f s1

1 s1
2 s1

1f s1
2f s1

1fe
−1 s1

2f(s1
1)−1 1

)t
= 0,

where the matrix of coefficients C ∈ R4×9 equals:

C =


1 0 0 0 K1G1 0 0 0 −Etot
0 1 0 0 L1 L2 0 0 −Ftot
0 0 1 0 K1G1 + L1 K2G2 G1 0 −S1,tot

0 0 0 1 0 K2G2 + L2 0 G2 −S2,tot

 . (3.1.7)

If we order the variables as before, e, f, s1
1, s

1
2 , the support of this system is:

A = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (0, 1, 1, 0),

(0, 1, 0, 1), (−1, 1, 1, 0), (0, 1,−1, 1), (0, 0, 0, 0)}.

We want to find two positively decorated 4-simplices with vertices in A which
share one facet. For example we take the simplices

∆1 = {(1, 0, 0, 0), (0, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 0, 0)},
∆2 = {(1, 0, 0, 0), (0, 1, 1, 0), (0, 1, 0, 1), (0, 1,−1, 1), (0, 0, 0, 0)}.
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It is straightforward to check that both simplices are positively decorated by C
if either A1 + 1 > A2 and α1, α2, α3, α4 > 0, or A1 + 1 < A2 and α1, α2, α3, α4 < 0,
as in the statement.

Given h ∈ C∆1,∆2 , by Theorem 2.2.11, there exists t0 ∈ R+ such that for all
0 < t < t0, the number of positive (nondegenerate) solutions of the scaled system:

th1 e+ th5 K1G1s
1
1f − th9 Etot = 0,

th2 f + th5 L1fs
1
1 + th6 L2fs

1
2 − th9 Ftot = 0,

th3 s1
1 + th7 G1

s1
1f

e
+ th5 (K1G1 + L1)s1

1f + th6 K2G2s
1
2f − th9 S1,tot = 0,

th4 s1
2 + th8 G2

s1
2f

s1
1

+ th6 (K2G2 + L2)s1
2f − th9 S2,tot = 0,

(3.1.8)

is at least two. If we think of the vector h as a function A → R (defined by h(aj) =
hj), then h1 = h(1, 0, 0, 0), h2 = h(0, 1, 0, 0), h3 = h(0, 0, 1, 0), h4 = h(0, 0, 0, 1),
h5 = h(0, 1, 1, 0), h6 = h(0, 1, 0, 1), h7 = h(−1, 1, 1, 0), h8 = h(0, 1,−1, 1) and
h9 = h(0, 0, 0, 0). Let ϕ1 and ϕ2 be the affine linear functions which agree with h
on the simplices ∆1 and ∆2 respectively. We can take h1 = h4 = h5 = h6 = h9 = 0.
Then ϕ1 = 0, h8 > 0 and ϕ2 is defined by ϕ2(x, y, z, w) = h8y−h8z−h8w. Moreover,

0 < h2, ϕ2(0, 1, 0, 0) = h8 < h2,
0 < h3, ϕ2(0, 0, 1, 0) = −h8 < h3,
0 < h7, ϕ2(−1, 1, 1, 0) = 0 < h7,

where we could take h2, h3 and h7 generic.
If we change the variables f̄ = th2f , s̄1

1 = th3s1
1, we get the following (Laurent)

polynomial equations:

e+ t−h2−h3 K1G1 s̄
1
1f̄ − Etot = 0,

f̄ + t−h2−h3 L1 f̄ s̄
1
1 + t−h2 L2 f̄ s

1
2 − Ftot = 0,

s̄1
1 + th7−h2−h3 G1

s̄1
1f̄

e
+ t−h2−h3 (K1G1 + L1) s̄1

1f̄ + t−h2 K2G2 s
1
2f̄ − S1,tot = 0,

s1
2 + th8+h3−h2 G2

s1
2f̄

s̄1
1

+ t−h2 (K2G2 + L2) s1
2f̄ − S2,tot = 0.

(3.1.9)

It is straightforward to verify that if we scale the constants:

t−h7K1, t
−h3−h8K2, t

−h2−h3L1, t
−h2L2, (3.1.10)

and we keep fixed the values of kcat1 , kcat2 , `cat1 and `cat2 and the total values Etot,
Ftot, S1,tot and S2,tot, the intersection of the steady state variety and the linear
varieties of fixed total concentrations of the dynamical system associated with the
corresponding network, is described by system (3.1.9).

It is easy to check that to get the scaling in (3.1.10), it is enough to rescale the
original constants as follows: t−h7kon1 , t−h3−h8kon2 , t−h2−h3`on1 and t−h2`on2 . Then,
for these choices of constants the system has at least two positive steady states. The
last part of the statement follows from the previous rescaling or from the inequalities



3.1. ENZYMATIC CASCADES WITH TWO LAYERS 65

that define the cone C∆1,∆2 of heights inducing regular subdivisions of the convex
hull of A that contain ∆1 and ∆2 and Theorem 2.2.13. For instance, we can check
that C∆1,∆2 is defined by 6 inequalities. We can write:

C∆1,∆2 = {h = (h1, . . . , h8) ∈ R8 : 〈mr, h〉 > 0, r = 1, . . . , 6},

where

m1 = (0, 1, 0, 1, 0,−1, 0, 0,−1), m2 = (0, 0, 1,−1,−1, 1, 0, 0, 0),

m3 = (1, 0, 0, 0,−1, 0, 1, 0,−1), m4 = (0, 0, 0, 1, 1,−2, 0, 1,−1),

m5 = (0, 1, 0, 0,−1, 1, 0,−1, 0), m6 = (0, 0, 1, 0, 0,−1, 0, 1,−1).

By Theorem 2.2.13, there exist M1, . . . ,M6 > 0 such that for any γ = (γ1, . . . , γ9)
in the open set

U = {γ ∈ R9
>0 : γmr < Mr, r = 1 . . . , 6},

the system

γ1 e+ γ5K1G1 s
1
1f − γ9Etot = 0,

γ2 f + γ5 L1 fs
1
1 + γ6 L2 fs

1
2 − γ9 Ftot = 0,

γ3 s
1
1 + γ7G1

s1
1f

e
+ γ5 (K1G1 + L1) s1

1f + γ6K2G2 s
1
2f − γ9 S1,tot = 0,

γ4 s
1
2 + γ8G2

s1
2f

s1
1

+ γ6 (K2G2 + L2) s1
2f − γ9 S2,tot = 0,

(3.1.11)

has at least two positive solutions. If we take γ1 = γ2 = γ3 = γ4 = γ9 = 1, and we
denote β1 = γ5

γ7
, β2 = γ6

γ8
, η1 = γ5 and η2 = γ6, the conditions such that γ belongs

to U are equivalent to the conditions (3.1.6), and it is easy to check that the steady
state equations of the network after the rescaling of the given parameters kon0 , kon1 ,
`on0 and `on1 by β1 kon1 , β2 kon2 , η1 `on1 and η2 `on2 give system (3.1.11).

Example 3.1.2. Note that the inequalities in the statement of Theorem 3.1.1 are
clearly compatible. For example, the inequalities are satisfied if we take in the first
case

`cat1

kcat1
= 1,

`cat2

kcat2
= 1, Etot = Ftot = 20, S1,tot = S2,tot = 30. We can obtain in this

case a value of t such that the system (3.1.9) has two or more positive solutions,
using Singular [25], with the library “signcond.lib” implemented by E. Tobis.

Fix for example h2 = 2, h3 = 1, h7 = 1, h8 = 1, K1 = 1, K2 = 1, L1 = 1 and
L2 = 1. We have then that G1 = 1 and G2 = 1. If we take t = 1

24
, we have that the

system has 3 positive solutions, checked with the following code:

>LIB "signcond.lib";

>ring r=(0,t), (x,y,z,w), dp;

>poly f1=x+t^3*y*z-20;

>poly f2=y+t^3*y*z+t^2*y*w-20;

>poly f3=x*z+t^2*z*y+t^3*2*y*z*x+t^2*y*w*x-30*x;

>poly f4=z*w+y*w+t^2*y*z*w-30*z;

>poly g1=subst(f1,t,24);
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>poly g2=subst(f2,t,24);

>poly g3=subst(f3,t,24);

>poly g4=subst(f4,t,24);

>ideal i=g1,g2,g3,g4;

>ideal j=std(i);

>firstoct(j);

3

Here x = e, y = f̄ , z = s̄1
1 and w = s1

2. It can be checked that if we take a
slightly higher value t = 1

23
, the corresponding system has only one positive solution.

This procedure is symbolic and thus certified, as opposed to numeric algorithms to
compute the roots which can be affected by numerical instability. It is based on the
algorithms described in [4].

3.2 Enzymatic cascades with n layers

We now present our results to the general case of an enzymatic cascade of n layers,
where we have n phosphorylation cycles, as in Figure 3.3, under the assumption
that there are (at least) two layers which share a phosphatase. We separate our
study into two cases: the case of the occurrence of the same phosphatase in two
consecutive layers (Theorem 3.2.1) and the case where the layers which share the
phosphatase are not consecutive (Theorem 3.2.3). The difficulty to deal with these
networks is that the simplified polynomials that we get to describe the steady states
in a given stoichiometric compatibility class depend on a number of variables that
grows linearly with n and the corresponding coefficient matrix does not have generic
entries. We are nevertheless able to detect two simplices in these high dimensional
spaces which share a facet, which are positively decorated by the (huge) coefficient
matrix.

We first set the notation.

3.2.1 Our setting

Using the notation in Figure 3.3, we call S0
i , S

1
i the substrate proteins in the i-th

layer, for i = 1, . . . , n. As before, the upper index can be interpreted as the absence
(0) or the presence (1) of a phosphate group in the substrate. The phosphorylation
in the first layer is catalyzed by the enzyme S1

0 . The activated protein S1
i in the i-th

layer acts as the modifier enzyme in the (i+ 1)-th layer. The dephosphorylation in
the i-th layer is carried out by a phosphatase Fi. Some of the Fi can be the same
species, that is, the same phosphatase can react at different layers.

We assume the following reaction scheme:

S0
i + S1

i−1

koni−→
←−
koffi

Y 0
i

kcati→ S1
i + S1

i−1, i = 1 . . . , n,

S1
i + Fi

`oni−→
←−
`offi

Y 1
i

`cati→ S0
i + Fi, i = 1, . . . , n.
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S0
n S1

n

Fn

· · · · · ·

Fi

S0
2 S1

2

F2

S0
1 S1

1

F1

S1
0

Figure 3.3: Enzymatic cascade with n layers.

We denote by F = {P1, . . . , Pr} the set of phosphatases that appear in the
network. In this case we have 4n+r+1 chemical species: S1

0 , S0
1 , S1

1 , S0
2 , S1

2 , . . . ,S0
n,

S1
n,, P1, P2 . . . Pr, Y

0
1 , Y 1

1 , Y 0
2 , Y 1

2 , . . . , Y 0
n , Y 1

n . We denote the concentration of the
species with small letters. For each j = 1, . . . , r, we call Λj = {i ∈ {1, . . . , n} : Fi =
Pj} and we consider the function j : {1, . . . , n} → {1, . . . , r}, defined by j(i) = j if
Fi = Pj.

The associated dynamical system that arises under mass-action kinetics is equal
to:

ds0
i

dt
= −koni

s0
i s

1
i−1 + koffi

y0
i + `catiy

1
i , i = 1, . . . , n,

ds1
i

dt
= kcatiy

0
i − `onis

1
i pj(i) + `off1y

1
i − koni+1s

0
i+1s

1
i + (koffi+1 + kcati+1)y0

i+1, i = 1, . . . , n− 1,

ds1
n

dt
= kcatny

0
n − `onn

s1
npj(n) + `offn

y1
n,

dy0
i

dt
= koni

s0
i s

1
i−1 − (koffi

+ kcati)y
0
i , i = 1, . . . , n,

dy1
i

dt
= `onis

1
i pj(i) − (`offi + `cati)y

1
i , i = 1, . . . , n,

ds1
0

dt
= −dy

0
1

dt
,

dpj
dt

= −
∑
i∈Λj

dy1
i

dt
, j = 1, . . . , r.

The space of linear forms yielding conservation laws has dimension n + r + 1, and
we consider the following n+ r + 1 linearly independent conservation relations:

s1
0 + y0

1 =S0,tot,

s0
i + s1

i + y0
i + y1

i + y0
i+1 =Si,tot, i = 1, . . . , n− 1, (3.2.1)

s0
n + s1

n + y0
n + y1

n =Sn,tot,

pj +
∑
i∈Λj

y1
i =Pj,tot, j = 1, . . . , r.

Again, following the general procedure described in [86], we can find binomial
equations that describe the concentration of the species at steady state. The con-



68 CHAPTER 3. REGIONS OF MULTISTATIONARITY IN CASCADES

centration of the intermediate species satisfy these binomial equations:

y0
i −Ki s

1
i−1s

0
i = 0, i = 1 . . . , n, y1

i − Li pj(i)s1
i = 0, i = 1 . . . , n,

where Ki =
koni

koffi
+kcati

, i = 1, . . . , n, Li =
`oni

`offi
+`cati

, i = 1, . . . , n. The remaining

binomials can be (algorithmically) chosen to be:

τi s
0
i s

1
i−1 − νi s1

i pj(i) = 0, i = 1, . . . , n,

where τi = kcati
Ki, νi = `cati

Li, i = 1, . . . , n.
As in the previous case of two layers, we can parametrize the positive steady

states by monomials. For instance, we can write the concentrations of all species in
terms of s1

i , for i = 0, 1, . . . , n and p1, . . . , pr:

s0
i = Gi

s1i pj(i)
s1i−1

, i = 1, . . . , n,

y0
i = KiGi s

1
i pj(i), i = 1, . . . , n,

y1
i = Li s

1
i pj(i), i = 1, . . . , n,

where Gi = νi
τi

for all i = 1, . . . , n.

3.2.2 Statement of our main results

Suppose first that there are two consecutive layers i0, i0 +1, 1 ≤ i0 ≤ n−1, with the
same phosphatase F , that is, Pj(i0) = Pj(i0+1), and with no restriction in the other
layers. As in (3.1.5), we will denote for any j = 1, . . . , n:

Aj =
`catj

kcatj

. (3.2.2)

Let α1,i0 , α2,i0 , α3,i0 and α4,i0 be as in the case n = 2, but these constants correspond
to the restriction to the two layers i0 and i0 + 1. That is:

α1,i0 =
Si0,tot
Ftot

−Ai0+1,

α2,i0 =(Ai0 + 1)− Si0,tot
Ftot

,

α3,i0 =
Ai0 + 1−Ai0+1

Ai0

Si0−1,tot

Ftot
−
(
Si0,tot
Ftot

−Ai0+1

)
,

α4,i0 =
Ai0 + 1−Ai0+1

Ai0+1 + 1

Si0+1,tot

Ftot
−
(
Ai0 + 1− Si0,tot

Ftot

)
,

where the value of Etot in the case n = 2 now corresponds to the value Si0−1,tot and
Ftot = Pj(i0),tot = Pj(i0+1),tot. We have the following result:

Theorem 3.2.1. Suppose n ≥ 3, and suppose that there are two consecutive layers
i0, i0 + 1, with 1 ≤ i0 ≤ n − 1, with the same phosphatase and with no restriction
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in the other layers. Let Ai0 , Ai0+1 be as in (3.2.2). Assume that the reaction rate
constants satisfy

Ai0 + 1 > Ai0+1 (3.2.3)

and the total concentration constants satisfy the inequalities α1,i0 , α2,i0 , α3,i0 , α4,i0 >
0, that is:

Ai0 + 1 >
Si0,tot
Ftot

> Ai0+1,
Si0−1,tot

Ftot
>

(
Si0,tot
Ftot

−Ai0+1

)
Ai0

Ai0 + 1−Ai0+1
,

Si0+1,tot

Ftot
>

(
Ai0 + 1− Si0,tot

Ftot

)
Ai0+1 + 1

Ai0 + 1−Ai0+1
,

or
Ai0 + 1 < Ai0+1, α1,i0 , α2,i0 , α3,i0 , α4,i0 < 0.

Then, there exists a rescaling in the constants koni , i = 1, . . . , n and `oni, i =
1, . . . , n, such that the system has at least two positive steady states.

We will give an explicit rescaling in the proof.

Remark 3.2.2. In the statement of Theorem 3.2.1 we have conditions which are
similar to those in the case n = 2, but depending on the reaction rate constants
corresponding to the layers i0 and i0 + 1 and total conservation constants. Again,
the two sets of inequalities in the statement of Theorem 3.2.1 are clearly compatible.

For n ≥ 3, there is not only an increase in the number of variables but also in the
number of conservation laws. The idea of the proof of Theorem 3.2.1 is to extend
the simplices that appear in the proof of Theorem 3.1.1 to simplices in the higher
dimensional space, showing that in fact the conditions of the new simplices to be
positively decorated are basically the same.

The other case is when the layers which share a phosphatase are not consec-
utive. Assume i1 < i2 are two non-consecutive layers sharing the same phos-
phatase. Assume also that there are no other layers with a common phosphatase
between them (otherwise, we would be in the hyphothesis of the previous case or
we could choose the indexes of these other layers). That is, there exists i1, i2,
with 1 ≤ i1 < i1 + 1 < i2 ≤ n, such that Pj(i1) = Pj(i2) = F , and Pj(i) for
i = i1 + 1, . . . , i2− 1 are all distinct and different from F . We impose no restrictions
on the phosphatases of the remaining layers layers 1, . . . , i1 − 1, i2 + 1, . . . , n.

Consider the following rational functions β1,i1,i2 , β2,i1,i2 , β3,i1,i2 and β4,i1,i2 de-
pending on the catalytic reaction rate constant and total concentration constants:

β1,i1,i2 =
Si1−1,tot

Si1,tot
− Ai1
Ai1+1

,

β2,i1,i2 =(Ai1 + 1)− Si1,tot
Ftot

,

β3,i1,i2 =
Si2−1,tot

Ftot
− (Ai1 + 1)

Si2,tot
Ftot

,

β4,i1,i2 =
Si1,tot
Ftot

−
(
Ai1 + 1

Ai2 + 1

) (
Ai2 + 1− Si2,tot

Ftot

)
,
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where Ftot = Pj(i1),tot = Pj(i2),tot.
We then have:

Theorem 3.2.3. Suppose n ≥ 3, and suppose there exists layers i1, i2, with 1 ≤
i1 < i1 + 1 < i2 ≤ n, such that Pj(i1) = Pj(i2) = F , Pj(i) for i = i1 + 1, . . . , i2 − 1
are all distinct and different from F , and with no restriction in the phosphatases of
layers 1, . . . , i1 − 1, i2 + 1, . . . , n. Assume the reaction rate constants and the total
concentration constants satisfy

β1,i1,i2 , β2,i1,i2 , β3,i1,i2 , β4,i1,i2 > 0.

Then, there exists a rescaling in the constants koni , i = 1, . . . , n and `oni, i = 1, . . . , n,
such that the system has at least two positive steady states.

Again, we will give an explicit rescaling in the proof.

Remark 3.2.4. The inequalities in the statement of Theorem 3.2.3 are compatible.
They have a similar flavour, but they are different from the conditions defining the
regions of multistationarity in Theorems 3.1.1 and 3.2.1.

3.2.3 The proof of Theorem 3.2.1

Proof of Theorem 3.2.1. Without loss of generality we suppose that the phosphatase
in the layers i0 and i0 + 1 is the phosphatase P1, that we call F . We showed in
(3.2.1) that we can parametrize the steady states in terms of the concentrations
s1
i , for i = 0, . . . , n, f (we use f instead of p1) and pi, for i = 2, . . . , r. To avoid

unnecessary notation, in this proof we call si = s1
i for all i = 0, . . . , n.

Consider the following set of monomials:

M = {si0−1, f, si0 , si0+1, si0f, si0+1f, si0f(si0−1)−1, si0+1f(si0)−1, 1}.

These monomials appear in the parametrization of the concentration at steady state
of the species in layers i0 and i0 + 1. Now, consider the set

M′ =M∪ {s0, s1, . . . , si0−2, si0+2, . . . , sn, p2, . . . , pr}.

And consider also the set of all the monomials that appear in the parametrization:

M′′ =M′∪{s1pj(1), . . . , si0−1pj(i0−1), si0+2pj(i0+2), . . . , snpj(n), s1pj(1)(s0)−1, . . .

. . . , si0−1pj(i0−1)(si0−2)−1, si0+2pj(i0+2)(si0+1)−1, . . . , snpj(n)(sn−1)−1}.

We have n+ r+ 1 variables: s0, s1, . . . , sn, f, p2, . . . , pr. Consider the variables with
this last order. Let A,A′, A′′ ⊂ Rn+r+1 be the subsets corresponding to the supports
of the setsM,M′,M′′ respectively, that is, the exponents of the monomials in each
set.

We consider an order in A′′ given by the order in which we construct M′′: first
the exponents corresponding to monomials inM (in that order), then the exponents
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corresponding to monomials that we add to obtainM′ (in that order), and then the
rest of the exponents, in the same order as enumerated above. We have 3n+ r + 2
monomials.

As in the case n = 2, we replace the monomial parametrization into the con-
servation laws (3.2.1) and we write this system in a matricial form. We call C ∈
R(n+r+1)×(3n+r+2) the matrix of coefficients of the resulting polynomial system.

We want to find two simplices with vertices inA′′ which share a facet. Inspired by
the 4-simplices that we chooses for the case n = 2, we take the following (n+ r+ 1)-
simplices:

∆1 = {ei0 , ei0+1 + en+2, ei0+2 + en+2, ei0+2, 0} ∪ (A′ \ A),

∆2 = {ei0 , ei0+1 + en+2, ei0+2 + en+2, ei0+2 + en+2 − ei0+1, 0} ∪ (A′ \ A).

where ei denotes the i-th canonical vector of Rn+r+1. Note that the points ei0 , ei0+2,
ei0+1 + en+2, ei0+2 + en+2, 0 correspond to the monomials si0−1, si0+1, si0f , si0+1f ,
1, and the points ei0 , ei0+1 + en+2 ,ei0+2 + en+2, ei0+2 + en+2− ei0+1, 0, correspond to
the monomials si0−1, si0f , si0+1f , si0+1f(si0)−1, 1 which are in correspondence with
the points of the simplices in the proof of Theorem 3.1.1.

We consider first the equations corresponding to the conservation laws with total
conservation constants Si0−1,tot, Ftot, Si0,tot, Si0+1,tot and then the equations corre-
sponding to the conservation constants S0,tot, . . . , Si0−2,tot,, Si0+2,tot,. . . , Sn,tot, P2,tot,
. . . , Pn,tot. The submatrices of C restricted to the columns corresponding to the
simplex ∆j, for j = 1, 2, are equal to:

C∆j =



Cj 0

0 . . . 0 −S0,tot
...

. . .
...

...
0 . . . 0 −Si0−2,tot

0 . . . 0 −Si0+2,tot
...

. . .
...

... Idn+r−3

0 . . . 0 −Sn,tot
0 . . . 0 −P2,tot
...

. . .
...

...
0 . . . 0 −Pr,tot



,

where C1 is the submatrix corresponding to columns of the exponents {ei0 , ei0+1 +
en+2, ei0+2 + en+2, ei0+2, 0} and C2 is the submatrix corresponding to the columns of
the exponents {ei0 , ei0+1 + en+2, ei0+2 + en+2, ei0+2 + en+2 − ei0+1, 0}, that is:

Cj =


1 Ki0Gi0 0 0 −Si0−1,tot

0 Li0 Li0+1 0 −Ftot
0 Ki0Gi0 + Li0 Ki0+1Gi0+1 0 −Si0,tot
0 0 Ki0+1Gi0+1 + Li0+1 (Cj)44 −Si0+1,tot

 ,

where (C1)44 = 1 and (C2)44 = Gi0+1.
Note that the matrix C∆j

is positively spanning if and only if Cj is positively
spanning, for j = 1, 2. Moreover, C1 and C2 are positively spanning if and only if the



72 CHAPTER 3. REGIONS OF MULTISTATIONARITY IN CASCADES

condition of the statement holds, that is, Ai0 +1 > Ai0+1 and α1,i0 , α2,i0 , α3,i0 , α4,i0 >
0; or Ai0 + 1 < Ai0+1 and α1,i0 , α2,i0 , α3,i0 , α4,i0 < 0.

Given h ∈ C∆1,∆2 , by Theorem 2.2.11 there exists t0 ∈ R>0 such that for all
0 < t < t0, the number of positive (nondegenerate) solutions of the scaled system,
that is, the system with the same support A′′ and matrix of coefficients Ct with
(Ct)ij = th(αj)cij, with αj ∈ A′′ and C = (cij), is at least two. This system has the
following form. Call x = (s0, s1, . . . , sn, f, p2, . . . , pr) and note that each coefficient
cij is a rational function of the vector of reaction rate constants that we call κ =
(kon1 , `on1 , . . . , ). To emphasize this, we write cij = cij(κ). Moreover, setting γj =
th(αj) for any j, we have a Laurent polynomial system of n + r + 1 equations in
n+ r + 1 variables:

∑
j

cij(κ) γj x
αj = 0, i = 1, . . . , n+ r + 1. (3.2.4)

Now, the reaction network we are considering satisfies the hypotheses of Theo-
rem 2.5.2. Then, there exists a vector of reaction rate constants κ̄ such that the
number of positive solutions of system (3.2.4) coincides with the number of positive
solutions of the following system:

∑
j

cij(κ̄)xαj = 0, i = 1, . . . , n+ r + 1. (3.2.5)

We now describe the associated vector κ̄ in an explicit form. We first describe
the cone C∆1,∆2 . We denote by hj the height corresponding to αj ∈ A′′, for j =
1, . . . , 3n + r + 2 (in the order corresponding to the construction of M′′ that we
described before). Let ϕ1 and ϕ2 be the affine linear functions which agree with h
on the simplices ∆1 and ∆2 respectively. We can take the heights of the points of
∆1 as zero, that is, h1 = h4 = h5 = h6 = h9 = 0 and hj = 0 for j = 10, . . . , n+ r+1,
and h8 > 0 (the height of the remaining point of ∆2 which is not in ∆1). Then,
ϕ1(x1, . . . , xn+r+1) = 0 and ϕ2(x1, . . . , xn+r+1) = −h8 xi0+1 − h8 xi0+2 + h8 xn+2.
Moreover, h satisfies 0 = ϕ1(α) < h(α), for all α 6∈ ∆1 and ϕ2(α) < h(α), for all
α 6∈ ∆2. Then, we have:

h8 < h2, 0 < h3, 0 < h7,

hj > 0, for j = n+ r + 7, . . . , 3n+ r + 2,

h8 < hn+r+6+j , for j ∈ Λ1,with j = 1, . . . , i0 − 1,

h8 < hn+r+4+j , for j ∈ Λ1,with j = i0 + 2, . . . , n,

h8 < h2n+r+4+j for j ∈ Λ1,with j = 1, . . . , i0 − 1,

2h8 < h2n+r+4+i, if i0 + 2 ∈ Λ1, and h8 < h2n+r+2+j for j ∈ Λ1,with j = i0 + 3, . . . , n.

Any such choice of h defines a regular subdivision that contains ∆1 and ∆2.
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If we change the variables f̄ = th2f , s̄i0 = th3si0 , we consider the constants:

Ki0 = t−h7Ki0 , Ki0+1 = t−h3−h8Ki0+1, Li0 = t−h2−h3Li0 , Li0+1 = t−h2Li0+1,

Ki = thn+r+6+i−h2n+r+4+iKi, i = 1, . . . , i0 − 1,

Ki = thn+r+4+i−h2n+r+2+iKi, i = i0 + 2, . . . , n, (3.2.6)

Li = thn+r+6+i−h2Li, if i ∈ Λ1, Li = thn+r+6+iLi, if i 6∈ Λ1, for i = 1, . . . , i0 − 1,

Li = thn+r+4+i−h2Li, if i ∈ Λ1, Li = thn+r+4+iLi, if i 6∈ Λ1, for i = i0 + 2, . . . , n,

and we keep fixed the values of the constants kcati0
, kcati0+1

, `cati0
and `cati0+1

and the
total conservation constants Si0−1,tot, Ftot, Si0,tot and Si0+1,tot, then the dynamical
system associated with the network with these constants is system (3.2.5) with
coefficients depending on the scaled reaction constants. Therefore, the cascade we
are considering has at least two positive steady states for these constants.

To get the scalings in (3.2.6) it can be checked that it is enough to rescale the
original constants as follows:

koni0
= t−h7koni0

, koni0+1 = t−h3−h8koni0+1 , `oni0
= t−h2−h3`oni0

, `oni0+1 = t−h2`oni0+1 ,

koni = thn+r+6+i−h2n+r+4+ikoni , i = 1, . . . , i0 − 1,

koni = thn+r+4+i−h2n+r+2+ikoni , i = i0 + 2, . . . , n,

`oni = thn+r+6+i−h2`oni , if i ∈ Λ1, `oni = thn+r+6+i`oni , if i 6∈ Λ1, for i = 1, . . . , i0 − 1,

`oni = thn+r+4+i−h2`oni , if i ∈ Λ1, `oni = thn+r+4+i`oni , if i 6∈ Λ1, for i = i0 + 2, . . . , n.

3.2.4 The proof of Theorem 3.2.3

For simplicity and to fix ideas, we only present a proof in the case when the first
and the last layer have the same phosphatase (that is, i1 = 1, i2 = n), and the other
layers have all different phosphatases. We also present an explicit rescaling for this
case. The general case is similar, but with a heavier notation.

Proof of Theorem 3.2.3. We call f the concentration of the phosphatase F , the
phosphatase that appear in the layers 1 and n, and we call fi = pj(i) for i =
2, . . . , n − 1. By assumption the variables fi are all distinct and different from f .
We showed in (3.2.1) that we can parametrize the steady states in terms of the con-
centrations s1

i , for i = 0, . . . , n, f and fi, for i = 2, . . . , n− 1. To avoid unnecessary
notation, in this proof we call again si = s1

i for all i = 0, . . . , n.
We have 2n variables, and we consider these 2n variables with the following order:

s0, s1, . . . , sn, f , f2, . . . , fn−1. In the monomial parametrization there are 4n+ 1 dif-
ferent monomials, and we consider these monomials with this order: s0, s1, . . . , sn, f ,
f2, . . . , fn−1, s1f , s2f2, . . . , sn−1fn−1, snf , s1f(s0)−1, s2f2(s1)−1, . . . , sn−1fn−1(sn−2)−1,
snf(sn−1)−1, 1.

As in the previous cases, we replace the monomial parametrization into the
conservation laws and we write this system in matricial form. Let C ∈ R(2n)×(4n+1)



74 CHAPTER 3. REGIONS OF MULTISTATIONARITY IN CASCADES

be the matrix of coefficients of this polynomial system. We call A the support of
the system.

We want to find two simplices with vertices in A which share a facet. We denote
B ⊂ A the set of the exponents corresponding to the monomials: s2f2(s1)−1,. . . ,
sn−2fn−2(sn−3)−1, f2, . . . , fn−1. We consider the two following simplices: ∆1 given
by the exponents corresponding to the monomials s0, s1f , snf , sn−1fn−1(sn−2)−1,
sn, 1, and the points in B, and ∆2 given by the exponents corresponding to the
monomials s0, s1f , snf , sn−1fn−1(sn−2)−1, snf(sn−1)−1, 1 and the points in B. That
is:

∆1 = {e1, e2 + en+2, en+1 + en+2, en + e2n − en−1, en+1, 0} ∪ B,
∆2 = {e1, e2 + en+2, en+1 + en+2, en + e2n − en−1, en+1 + en+2 − en, 0} ∪ B,

where ei denotes the i-th canonical vector of R2n.
If we consider first the equations corresponding to the conservation laws with

total conservation constants S0,tot, Ftot, S1,tot, Sn−1,tot, Sn,tot and then the equations
corresponding to the conservation constants S2,tot, . . . , Sn−2,tot, F2,tot, . . . , Fn−1,tot,
the submatrices of C restricted to the columns corresponding to the simplices ∆j

for j = 1, 2 are as follows. We change the order of the columns following the order
of the monomials in each simplex; the property of being positively spanning remains
invariant:

C∆j =



Cj 0 0

0 . . . 0 −S2,tot
...

. . .
...

... G 0
0 . . . 0 −Sn−2,tot

0 . . . 0 −F2,tot
...

. . .
...

... 0 Idn−2

0 . . . 0 −Fn−1,tot


,

where G ∈ R(n−3)×(n−3) is the diagonal matrix with Gii = Gi+1, for i = 1, . . . , n− 3,
C1 is the submatrix corresponding to columns of the exponents {e1, e2 +en+2, en+1 +
en+2, en + e2n− en−1, en+1, 0} and C2 is the submatrix corresponding to the columns
of the exponents {e1, e2 + en+2, en+1 + en+2, en + e2n − en−1, en+1 + en+2 − en, 0}:

Cj =


1 K1G1 0 0 0 −S0,tot

0 L1 Ln 0 0 −Ftot
0 K1G1 + L1 0 0 0 −S1,tot

0 0 KnGn Gn−1 0 −Sn−1,tot

0 0 KnGn + Ln 0 (Cj)55 −Sn,tot

 , (3.2.7)

with (C1)55 = 1 and (C2)55 = Gn.
We observe that the matrix C∆j

if positively spanning if and only if Cj is posi-
tively spanning, for i = 1, 2. It is straightforward to check that the conditions under
which C1 and C2 are positively spanning are equivalent to the conditions of the
statement: β1,1,n, β2,1,n, β3,1,n, β4,1,n > 0.

Given h ∈ C∆1,∆2 , by Theorem 2.2.11 there exists t0 ∈ R>0 such that for all
0 < t < t0, the number of positive (nondegenerate) solutions of the scaled system,
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i.e. the system with support A and matrix of coefficients Ct, with (Ct)ij = th(αj)cij,
(with αj ∈ A, C = (cij)) is at least two.

We now argue as in the proof of Theorem 3.2.1. We can write our system in
the form (3.2.4), and since any cascade of Goldbeter-Koshland loops satisfies the
hypotheses of Theorem 2.5.2, we again deduce the existence of a vector of rate
constants κ̄ such that the number of positive solutions of this system coincides with
the number of positive solutions of the corresponding system of the form (3.2.5). In
what follows, we also explicitly describe the rescaling of the parameters.

We denote by hj the height corresponding to αj ∈ A, for j = 1, . . . , 4n+ 1, with
the order of the monomials as we described before. Let ϕ1 and ϕ2 be the affine
linear functions which agree with h on the simplices ∆1 and ∆2 respectively.

We can take zero heights at the points of ∆1, that is, h1 = h2n+1 = h3n = h4n−1 =
hn+1 = h4n+1 = 0, hj = 0 for j = n+3, . . . , 2n, hj = 0, for j = 3n+2, . . . , 4n−2 = 0
if n > 3 (note that if n = 3, h3n+2 = h4n−1, already defined) and h4n > 0 (the
height of the other point of ∆2). Then, ϕ1(x1, . . . , x2n) = 0 and ϕ2(x1, . . . , x2n) =
−h4n

∑n+1
i=2 xi + h4n xn+2.

As h ∈ C∆1,∆2 , we have that h satisfies 0 = ϕ1(α) < h(α), for all α 6∈ ∆1 and
ϕ2(α) < h(α), for all α 6∈ ∆2. Then, we have these conditions:

h4n < hn+2, hj > 0, for j = 2, . . . , n, 2n+ 2, . . . , 3n− 1, 3n+ 1.

If we change the variables s̄i = thi+1si, for i = 1, . . . , n − 1 and f̄ = thn+2f , we
consider the constants:

K1 = t−h3n+1K1, L1 = t−h2−hn+2L1,

Ki = th2n+i−hiKi, Li = th2n+i−hi+1Li, for i = 2, . . . , n− 1,

Kn = t−hn−h4nKn, Ln = t−hn+2Ln,

(3.2.8)

without altering the values of the constants kcat1 , kcatn , `cat1 , `catn and the total
conservation values, then the dynamical system associated with the network with
these constants is the scaled system. Therefore, the network has at least two positive
steady states for this choice of constants.

It is straightforward to check that to get the scalings in (3.2.8) it is enough to
rescale the original constants as follows:

kon1 = t−h3n+1kon1 , `on1 = t−h2−hn+2`on1 ,

koni = th2n+i−hikoni , `oni = th2n+i−hi+1`oni , for i = 2, . . . , n− 1,

konn = t−hn−h4nkonn , `onn = t−hn+2`onn .

3.3 General statements behind our results

In the proof of Theorem 3.2.1 we extrapolated the multistationarity behaviour and
the description of a region of multistationarity of a subnetwork (described in 3.1.1) to
the whole network, even if it has more linearly independent conservation relations.
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For this, we developed some ideas that we now abstract in Theorem 3.3.3 and
that can be used in the study of other cascade mechanisms. As we remarked at
the beginning of this chapter, they can be applied to describe a multistationarity
region for the Ras cascade in Figure 3.1 (see [88] for details about different models),
extrapolating our results about a single layer with two sequential phosphorylation
cycles (see Theorem 2.4.1).

We start with a couple of lemmas. Given a lattice configurationA, we will denote
by Aff(A) the affine span of A consisting of of all points

∑
a∈A λa · a with λa ∈ Z

for all a ∈ A and
∑

a∈A λa = 0.

Lemma 3.3.1. Let A ⊂ A′ ⊂ Zd be finite point configurations, with Aff(A) =
Aff(A′) = Zd. Suppose that τ is a regular subdivision of A. Then, there exists a
regular subdivision τ ′ of A′ such that τ ⊂ τ ′. Moreover, we can choose a lifting
function h′ inducing τ ′ such that h := h′|A induces τ .

Proof. Let hτ : A → R be any lifting function inducing the subdivision τ . Let
hA,A′ : A′ → R be any lifting function which is zero on A and positive otherwise.
Extending hτ by zero outside A, we get that for ε > 0 small enough the function
h′ := hA,A′ + ε · hτ induces a regular subdivision τ ′ of A′ containing the cells in τ
and h := h′|A = ε · hτ induces τ .

Lemma 3.3.2. Let A ⊂ A′ ⊂ Zd′ be finite point configurations, with rkAff(A) = d <
rkAff(A′) = d′. Assume moreover that A′ \A has cardinality d′− d. Suppose that τ
is a regular subdivision (triangulation) of A. For each σ ∈ τ define σ′ = σ∪(A′\A).
Then, the collection τ ′ := {σ′, σ ∈ τ} defines a regular subdivision (triangulation)
of A′. Moreover, τ ′ can be induced by a lifting function h′ whose restriction to A
induces τ .

Proof. Consider a point a ∈ A′ \ A. Then a is outside the hyperplane spanned by
A, that is, a ∪ A is a pyramid over A. It is known (see Observation 4.2.3 in [24])
that the collection {σ ∪ a, σ ∈ τ} is a subdivision of a ∪ A, and it is regular if and
only if τ is regular. Then, we can see A′ as an iterated pyramid over A and the
lemma follows by applying successively the previous fact.

Given a matrix D ∈ RdD×nD and I ⊂ {1, . . . , nD}, we will denote by DI the
submatrix of D corresponding to the columns indexed by I. For i ∈ {1, . . . , nD},
D(i) will denote the matrix obtained by removing the i-th column of D, and for
j ∈ {1, . . . , dD}, Dj will denote the j-th row of D.

Theorem 3.3.3. Let d, d′ ∈ N with d ≤ d′. Let A ⊂ A′′ ⊂ Zd′ be finite point
configurations, with rkAff(A) = d, rkAff(A′′) = d′. Write A = {a1, . . . , an}, A′′ =
A∪{an+1, . . . , am}, with m ≥ d′ > n. Set A′ = A∪{an+1, . . . , an+d′−d} and assume
that rkAffA′ = d′. Let τ be a regular subdivision of A induced by a lifting function
h, τ ′ the regular subdivision of A′ obtained as in Lemma 3.3.2, and τ ′′ any regular
subdivision of A′′ such that τ ′ ⊂ τ ′′, induced by a lifting function h′′, such that h′′

restricted to A induces τ .
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Let f1, . . . , fd be polynomials with support in A and coefficient matrix C of rank
d. Let f ′′1 , . . . , f

′′
d , . . . , f

′′
d′ be polynomials with support A′′ and coefficient matrix C ′′

of rank d′ of the form (
C 0 D1

M B D2

)
,

with B ∈ R(d′−d)×(d′−d) invertible. Assume τ has p d-simplices positively decorated
by C and the determinants of the submatrices(

CI
(B−1MI)j

)
,

have all the same sign as (−1)d+i det(CI(i)), for each i = 1, . . . , d + 1, for each
j = 1, . . . , d′ − d, and for each subset I ⊂ {1, . . . , n} which indexes a positively
decorated simplex. Then, there exists t0 > 0, such that for 0 < t < t0, the deformed
system f ′′1,t = · · · = f ′′d′,t = 0, where

f ′′i,t(x) =
m∑
j=1

c′′i,jt
h′′(aj)xaj ,

has at least p positive nondegenerate real roots.

Proof. The subdivision τ ′′ can be obtained by Lemma 3.3.1. Note that the columns
of B correspond to the points in A′ \ A.

Suppose that ∆ ∈ τ is a d-simplex positively decorated by C. Then ∆′ =
∆∪{an+1, . . . , an+d′−d} is a d′-simplex of τ ′ ⊂ τ ′′. We will show that ∆′ is positively
decorated by C ′′.

Suppose that ∆ is indexed by the set I = {i1, . . . , id+1} of {1, . . . , n}. We have
to prove that the submatrix C ′′I′ of C ′′ is positively spanning, with I ′ = I ∪ {n +
1, . . . , n+ d′ − d}. This is equivalent to prove that the matrix

G =

(
Idd 0
0 B−1

)(
CI 0
MI B

)
=

(
CI 0

B−1MI Idd′−d

)
,

is positively spanning, as the property of being positively spanning remains invariant
under multiplication by invertible matrices.

We compute (−1)i det(G(i)) for i = 1, . . . , d′ + 1. For i = 1, . . . , d+ 1, we have:

(−1)i det(G(i)) = (−1)i det

(
CI(i) 0

B−1MI(i) Idd′−d

)
= (−1)iCI(i),

which have all the same sign, because ∆ is positively decorated by C. Take now
i > d + 1. Let j ∈ 1, . . . , d′ − d such that d + 1 + j = i. Moving the i-th row of G
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to the row d+ 2 in j − 1 interchanges of consecutive rows, we have:

(−1)i det(G(i)) =(−1)i det

(
CI 0

B−1MI Idd′−d(j)

)

=(−1)d+1+j(−1)j−1 det

 CI 0
(B−1MI)j 0

(B−1MI)[j] Idd′−d−1(j)


=(−1)d det

(
CI

(B−1MI)j

)
,

where (B−1MI)[j] denotes the submatrix of B−1MI obtained by removing its j-th
row. For each j = 1, . . . , d′−d, this determinant has the same sign as (−1)iCI(i), for
each j = 1, . . . , d′ − d, by hypothesis. Then, the simplex ∆′ is positively decorated
by C ′′.

We deduce that if τ has p d-simplices positively decorated by C, then τ ′′ has
p d′-simplices positively decorated by C ′′. Then, by Theorem 2.2.11, there exists
t0 > 0, such that for 0 < t < t0, the system f ′′1,t = · · · = f ′′d′,t = 0, has at least p
positive nondegenerate real roots.

Remark 3.3.4. The conditions that guarantee that the p d′-simplices of τ ′′ are
positively decorated by C ′′ include the conditions such that the p d-simplices of τ
are positively decorated by C, plus other conditions. In the cases of cascades of
Goldbeter-Koshland loops that we studied in Section 3.2, these other conditions are
automatically fulfilled.



Chapter 4

Intermediates and parameter
regions that give rise to 2[n2 ] + 1
positive steady states in the n-site
phosphorylation system

We introduced in Section 1.3 of Chapter 1, the distributive sequential n-site phos-
phorylation/dephosphorylation system, which is an important building block in net-
works of chemical reactions arising in molecular biology.

In [108] it is shown that for certain choices of the reaction rate constants and total
conservation constants, the distributive n-site phosphorylation system can have n
(resp. n + 1) positive steady states for n odd (resp. even); that is, the system can
have 2[n

2
] + 1 positive steady states, where [.] denotes integer part. In this chapter

we give open parameter regions in the space of reaction rate constants and total
conservation constants that ensure these number of positive steady states, while
assuming in the modeling that roughly only 1

4
of the intermediates occur in the

reaction mechanism. This result is based on the general framework developed in
Chapter 2.

The possible number of positive steady states of the n-site phosphorylation sys-
tem (for fixed total conservation constants) has been studied in several articles. For
n = 2, it is a well known fact that the number of nondegenerate positive steady
states is one or three [76, 108]. The existence of bistability is proved in [62]. In [12]
and [16], the authors give conditions on the reaction rate constants to guarantee the
existence of three positive steady states based on tools from degree theory. This
approach does not describe explicit conditions on the total conservation constants
for which there is multistationarity, but the authors show how to find values of the
total concentrations such that multistationarity occurs. For an arbitrary number n
of phosphorylation sites, it was shown in [108] that the system has at most 2n − 1
positive steady states. In the same article, the authors showed that there exist re-
action rate constants and total conservation constants such that the network has
2[n

2
] + 1 positive steady states for any value of n.

79
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In [48] (see also [63]) the authors showed parameter values such that for n = 3 the
system has five positive steady states, and for n = 4 the system has seven positive
steady states, obtaining the upper bound given in [108]. In the recent article [15]
the authors show that if the n-site phosphorylation system is multistationary for a
choice of rate constants and total conservation constants (Stot, Etot, Ftot) then for any
positive real number c there are rate constants for which the system is multistation-
ary when the total conservation constants are scaled by c. Concerning the stability,
in [103] it is shown evidence that the system can have 2[n

2
] + 1 positive steady states

with [n
2
] + 1 of them being stable. Recently, a proof of this unlimited multistabil-

ity was presented in [39], where the authors find a choice of parameters that gives
the result for a smaller system, and then extend this result using techniques from
singular perturbation theory.

In Section 2.4 of Chapter 2, we gave parameter regions for the occurrence of
multistationarity for the n-site sequential phosphorylation system, but no more than
three positive steady states are ensured. These conditions are based on a general
framework to obtain multistationary regions jointly in the reaction rate constants
and the total conservation constants. Our approach in this chapter uses this sys-
tematic technique.

In [42] was introduced a mathematical framework to study the dynamical prop-
erties of models that differ in how intermediates are included, see Section 1.3 of
Chapter 1. More specifically, the emergence of multistationarity of the n-site phos-
phorylation system with less intermediates was studied in [90]. Recall hat the n-site
phosphorylation network without any intermediates complexes has only one steady
state for any choice of parameters. In [90], the authors proposed a criterion to charac-
terize which subsets of intermediate complexes are responsible for multistationarity,
when the network obtained by removing intermediates has a binomial steady state
ideal. In particular, they show which are the minimal sets of intermediates that
give rise to a multistationarity system in the n-site phosphorylation system, but
they do not give information about the possible number of positive steady states,
and they do not describe the parameter regions for which these subnetworks are
multistationary.

In this chapter, we work with subnetworks of the sequential n-site phospho-
rylation system that only have intermediates in the E component (that is, in the
connected component of the network where the kinase E reacts), see Definition 4.1.1.
In case of the full mechanism on the E component or if we only assume that there are
intermediate species that are formed between the phosphorylated substrates with
parity equal to n (that is, roughly only 1

4
of the intermediates of the n sequential

phosphorylation cycle), we obtain conditions on the parameters to ensure as many
positive steady states as possible. Indeed, we show in Proposition 4.1.7 that the
maximum number of complex solutions to the steady state equations intersected
with the linear conservation relations is always n+ 1, the maximum number of real
roots is also n + 1, that could be all positive when n is even, while only n of them
can be positive when n is odd, so the maximum number of positive steady states
equals 2[n

2
] + 1 for any n. In Theorem 4.1.2 and Corollary 4.1.5, which follows
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from Theorem 4.1.4, we give conditions on the parameters so that the associated
phosphorylation/dephosphorylation system admits these number of positive steady
states.

The Chapter is organized as follows. In Section 4.1 we state present our results for
subnetworks of the n-site phosphorylation system. The main results of this section
are Theorem 4.1.2 and Theorem 4.1.4. We give upper bounds in Proposition 4.1.7
and then we give the proofs of the theorems. Also, in Proposition 4.1.9 we show
that a single intermediate is enough to ensure 2[n

2
] + 1 positive steady states. This

result has been independently found by Elisenda Feliu (personal communication).
In Section 4.2 we present a general lifting result, Theorem 4.2.1, which is built on
Theorem 4 in [42]. We apply this result to the subnetworks GJ . In Corollary 4.2.2 we
give precise conditions on the reaction rate constants to lift the regions of multista-
tionarity for the subnetworks GJ to regions of multitationarity with 2[n

2
]+1 positive

steady states of the full n-sequential phosphorylation system. Finally, we present
an Appendix in which we explain how to implement the computational approach
to find new regions of multistationarity. The implementations and computations in
this Appendix were made by Rick Rischter.

4.1 Results for n-site phosphorylation subnetworks

In order to state Theorem 4.1.2 and Theorem 4.1.4, the main results of this section,
we need to introduce some notations.

Definition 4.1.1. For any natural number n, we write In = {0, . . . , n− 1}. Given
n ≥ 1, and a subset J ⊂ In, we denote by GJ the network whose only intermediate
complexes are Yj for j ∈ J, and none of the Ui. It is given by the following reactions:

Sj + E

konj−→
←−
koffj

Yj
kcatj→ Sj+1 + E, if j ∈ J,

Sj + E
τj→ Sj+1 + E, if j /∈ J, (4.1.1)

Sj+1 + F
νj→ Sj + F, 0 ≤ j ≤ n− 1,

where the labels of the arrows are positive numbers. We will also denote by GJ the
associated differential system with mass-action kinetics.

For all these systemsGJ , there are always three linearly independent conservation
laws for any value of n:

n∑
i=0

si +
∑
j∈J

yj = Stot, e+
∑
j∈J

yj = Etot, f = Ftot, (4.1.2)

where the total conservation constants Stot, Etot, Ftot are positive for any trajectory
of the differential system which intersects the positive orthant. Note that the con-
centration of the phosphatase F is constant, equal to Ftot.
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To get lower bounds on the number of positive steady states with fixed positive
total conservation constants, we first consider the network GIn , that is, when all the
intermediates in the E component appear. It has the following associated digraph:

S0 + E
kon0−→
←−
koff0

Y0
kcat0→ S1 + E · · · →Sn−1 + E

konn−1−→
←−

koffn−1

Yn−1

kcatn−1→ Sn + E

Sn + F
νn−1→ Sn−1 + F · · · →S1 + F

ν0→ S0 + F.

(4.1.3)

We have the following result:

Theorem 4.1.2. Let n ≥ 1. With the previous notation, consider the network GIn

in (4.1.3), and suppose that the reaction rate constants kcati
and νi, i = 0, . . . , n−1,

satisfy the inequality

max
i even

{
kcati

νi

}
< min

i odd

{
kcati

νi

}
.

For any positive values Stot, Etot and Ftot of the total conservation constants with

Stot > Etot,

verifying the inequalities:

max
i even

{
kcati

νi

}
<

(
Stot
Etot

− 1

)
Ftot < min

i odd

{
kcati

νi

}
, (4.1.4)

there exist positive constants B1, . . . , Bn such that for any choice of positive constants
λ0, . . . , λn−1 satisfying

λj
λj−1

< Bj for j = 1, . . . , n− 1,
1

λn−1
< Bn, (4.1.5)

rescaling of the given parameters konj
by λj konj

, for each j = 0, . . . , n− 1, gives rise
to a system with exactly 2[n

2
] + 1 nondegenerate positive steady states.

Remark 4.1.3. We will also show in the proof of Theorem 4.1.2, that for any
reaction rate constants and total conservation constants satisfying (4.1.4), there
exist t0 > 0 such that for any value of t ∈ (0, t0), the system GIn has exactly 2[n

2
]+1

nondegenerate positive steady states after modifying the constants konj
by tj−nkonj

for each j = 0, . . . , n− 1.

We now consider subnetworks GJ , with J ⊂ Jn where

Jn := {i ∈ In : (−1)i+n = 1}, for n ≥ 1, (4.1.6)

that is, subsets J with indexes that have the same parity as n.
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Theorem 4.1.4. Let n ≥ 1, and consider a subset J ⊂ Jn. Let GJ be its associated
system as in (4.1.1). Assume moreover that

Stot > Etot.

A multistationarity region in the space of parameters for which the system GJ admits
at least 1+2|J | positive steady states can be described as follows. Given any positive
value of Ftot, choose any positive real numbers kcatj

, νj, with j ∈ J satisfying

max
j∈J

{
kcatj

νj

}
<

(
Stot
Etot

− 1

)
Ftot. (4.1.7)

Then, there exist positive constants B1, . . . , Bn such that for any choice of positive
constants λ0, . . . , λn−1 satisfying

λj
λj−1

< Bj for j = 1, . . . , n− 1,
1

λn−1
< Bn, (4.1.8)

rescaling of the given parameters konj
by λj konj

, for j ∈ J and τj by λjτj if j /∈ J
gives rise to a system with at least 1 + 2|J | positive steady states.

The following immediate Corollary of Theorem 4.1.4 implies that we can obtain
a region in parameters space with [n

2
] intermediates, where the associated system

has 2[n
2
] + 1 positive steady states.

Corollary 4.1.5. Let n ≥ 1, and consider the network GJn as in (4.1.1), with Jn
as in (4.1.6). Assume moreover that

Stot > Etot.

Then, there is a multistationarity region in the space of parameters for which the
network GJn admits 2[n

2
] + 1 steady states (with fixed total conservation constants

corresponding to the coordinates of a vector of parameters in this region), described
in the statement of Theorem 4.1.4.

We chose to assume that the subnetworks we consider have intermediate species
only in the E component, but of course there is a symmetry in the network inter-
changing E with F , each Si with Sn−i, the corresponding intermediates and rate
constants, and completely similar results hold if we assume that there are only
intermediates in the F component.

In Subsection 4.1.3 we present the proofs of Theorems 4.1.2 and 4.1.4.

4.1.1 Parametrizing the steady states

The following lemma gives a positive parametrization of the concentration of the
species at steady state for the systems GJ , in terms of the concentrations of the
unphosphorylated substrate S0 and the kinase E. It is a direct application of the
general procedure presented in Theorem 4.8 in [86], and generalizes the parametriza-
tion (2.4.3) given in Section 2.4 in Chapter 2.
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Lemma 4.1.6. Given n ≥ 1 and a subset J ⊂ In, consider the system GJ as in
Definition 4.1.1. Denote for each j ∈ J

Kj =
konj

koffj
+ kcatj

, τj = kcatjKj , (4.1.9)

set T−1 = 1, and for any i = 0, . . . , n− 1:

Ti =
i∏

j=0

τj
νj
. (4.1.10)

Then, the parametrization of the concentrations of the species at a steady state in
terms of s0 and e is equal to:

si =
Ti−1

(Ftot)i
s0e

i, i = 1, . . . , n, yj =
Kj Tj−1

(Ftot)j
s0e

j+1, j ∈ J, (4.1.11)

Let n ≥ 1 and a subset J ⊂ In. If we substitute the monomial parametrization of
the concentration of the species at steady state (4.1.11) into the conservation laws,
we obtain a system of two equations in two variables s0 and e. We have:

s0 +
∑
j∈J

(
Tj

(Ftot)j+1
+
Kj Tj−1

(Ftot)j

)
s0e

j+1 +
∑
j /∈J

Tj
(Ftot)j+1

s0e
j+1 − Stot = 0, (4.1.12)

e+
∑
j∈J

Kj Tj−1

(Ftot)j
s0e

j+1 − Etot = 0.

We can write system (4.1.12) in matricial form:

C
(
s0 e s0e s0e

2 . . . s0e
n 1

)t
= 0, (4.1.13)

where C ∈ R2×(n+3) is the matrix of coefficients:

C =

(
1 0 T0

Ftot
+ β0

T1
(Ftot)2 + β1 . . . Tn−1

(Ftot)n
+ βn−1 −Stot

0 1 β0 β1 . . . βn−1 −Etot

)
, (4.1.14)

with

βj =
Kj Tj−1

(Ftot)j
for j ∈ J, and βj = 0 if j /∈ J. (4.1.15)

Note that if we order the variables s0, e, the support of the system (that is, the
exponents of the monomials that occur) is the following set A:

A = {(1, 0), (0, 1), (1, 1), (1, 2), . . . , (1, n), (0, 0)} ⊂ Z2, (4.1.16)

independently of the choice of J ⊂ In.
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4.1.2 Upper bounds on the number of positive steady states

We first recall Kushnirenko Theorem, a fundamental result about sparse systems
of polynomial equations, which gives a bound on the number of complex solutions
with nonzero coordinates. Given a finite point configuration A ⊂ Zd, denote by
chull (A) the convex hull of A. We write vol to denote Euclidean volume, and set
C∗ = C \ {0}.
Kushnirenko Theorem [71]: Given a finite point configuration A ⊂ Zd, a
sparse system of d Laurent polynomials in d variables with support A has at most
d! vol(chull (A)) isolated solutions in (C∗)d (and exactly this number if the polyno-
mials have generic coefficients.)

We also recall the classical Descartes rule of signs.

Descartes rule of signs: Let p(x) = c0 + c1x+ · · ·+ cmx
m be a nonzero univariate

real polynomial with r positive real roots counted with multiplicity. Denote by s the
number of sign variations in the ordered sequence of the signs sign(c0), . . . , sign(cm)
of the coefficients, i.e., discard the 0’s in this sequence and then count the number
of times two consecutive signs differ. Then r ≤ s and r and s have the same parity,
which is even if c0cm > 0 and odd if c0cm < 0.

We then have that 2[n
2
] + 1 is an upper bound for the number of positive real

solutions of the system of equations defining the steady states of any system GJ in
Definition 4.1.1:

Proposition 4.1.7. For any choice of rate constants and total conservation con-
stants, the dynamical system GJ associated with any subset J ⊂ In has at most
2[n

2
] + 1 isolated positive steady states. In fact, the polynomial system of equations

defining the steady states of GJ can have at most n+ 1 isolated solutions in (C∗)d.

Proof. The number of positive steady states of the subnetwork GJ is the number of
positive solutions of the sparse system (4.1.12) of two equations and two variables.
The support of the system is (4.1.16) whose convex hull has Euclidean volume equal
to n+1

2
. By Kushnirenko Theorem, the number of isolated solutions in (C∗)2 is at

most 2! (n+1)
2

= n + 1. In particular, the number of isolated positive solutions is at
most n+ 1.

Moreover, when all positive solutions are nondegenerate, their number is neces-
sarily odd by Corollary 2 in [12], which is based on the notion of Brouwer’s degree.
Indeed, in our case, we can bypass the condition of nondegeneracy because we can
use Descartes rule of signs in one variable. In fact, from the first equation of sys-
tem (4.1.12), we can write:

s0 =
Stot
p(e)

, (4.1.17)

where p(e) is the following polynomial of degree n on the variable e:

p(e) := 1 +

n−1∑
i=0

(αi + βi)e
i+1, (4.1.18)
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with

αi =
Ti

(Ftot)i+1
, i = 0, . . . , n− 1, (4.1.19)

and βi =
Kj Tj−1

(Ftot)j
if j ∈ J or βj = 0 if j /∈ J were defined in (4.1.15). Note that for

any e > 0 it holds that p(e) > 0, and so s0 > 0. If we replace (4.1.17) in the second
equation of (4.1.12), we have:

e+
n−1∑
i=0

βi
Stot
p(e)

ei+1 − Etot = 0. (4.1.20)

The number of positive solutions of the equation (4.1.20) is the same if we multiply
by p(e):

q(e) := e p(e) +

n−1∑
i=0

βiStote
i+1 − Etot p(e) = 0. (4.1.21)

This last polynomial q has degree n + 1, with leading coefficient equal to αn−1 +
βn−1 > 0 and constant coefficient equal to −Etot < 0. The sign variation of the
coefficients of q has the same parity as the sign variation of the leading coefficient
and the constant coefficient, which is one. So, by Descartes rule of signs, as the sign
variation is odd, the number of positive solutions is also odd.

4.1.3 Proofs of Theorems 4.1.2 and 4.1.4

We start this section with a lemma.

Lemma 4.1.8. Consider A = {(1, 0), (0, 1), (1, 1), (1, 2), . . . , (1, n), (0, 0)} ⊂ Z2.
The triangulation Γ of A with the following 2-simplices:

{{(1, j), (1, j + 1), (0, 0)}j=0,...,n−1, {(0, 1), (1, n), (0, 0)}}

is regular (see Figure 4.1).

Figure 4.1: Triangulation Γ of A.
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Proof. We can take h : A → R, with h(0, 0) = 0, h(0, 1) = n and h(1, j) = j(j−1)
2

, for
j = 0, . . . , n − 1. It is easy to check h defines a regular triangulation that is equal
to Γ.

The idea in the proofs of Theorem 4.1.2 and Theorem 4.1.4 is to detect positively
decorated simplices in the regular triangulation Γ.

Proof of Theorem 4.1.2. By Proposition 4.1.7, the number of positive solutions of
the system GIn is at most 2[n

2
] + 1. So, it is enough to prove that this number is

also a lower bound.
The number of positive steady states of the system GIn is the number of positive

solutions of the system (4.1.12). As we saw before, the support of this last system
is

A = {(1, 0), (0, 1), (1, 1), (1, 2), . . . , (1, n), (0, 0)} ⊂ Z2,

with coefficient matrix C (4.1.14). Note that if one multiplies a column of C by
a positive number, then a simplex is positively decorated by C if and only if it is
positively decorated by the new matrix. After multiplying the columns by convenient
positive numbers, we obtain the following matrix from C:

Csimple =

(
1 0 M0 . . . Mn−1 −Stot
0 1 1 . . . 1 −Etot

)
,

where Mi =
kcati

νiFtot
+ 1, for each i = 0, . . . , n− 1. We will work with this new matrix

Csimple.
We consider the regular triangulation Γ in Lemma 4.1.8.
The simplex {(1, 0), (1, 1), (0, 0)} of Γ is positively decorated by Csimple if and

only if EtotM0− Stot < 0. The simplex {(1, j), (1, j + 1), (0, 0)}, for j = 1, . . . , n− 1,
corresponds to the submatrix

Csimplej =

(
Mj−1 Mj −Stot

1 1 −Etot

)
,

and it is positively decorated by Csimple if and only if EtotMj−1−Stot and EtotMj−
Stot have opposite signs. The last simplex {(0, 1), (1, n), (0, 0)} is positively decorated
by Csimple if and only if EtotMn−1 − Stot > 0.

Therefore we always have at least n positively decorated simplices using all sim-
plices of Γ but the last one, just by imposing

(EtotMi − Stot)(−1)i < 0, for i = 0, . . . , n− 1. (4.1.22)

We can include the last simplex if and only if n is even (because otherwise the
inequalities are not compatible), and in this case we have at least n + 1 positively
decorated simplices. We can obtain 2[n

2
] + 1 positively decorated simplices if the

inequalities (4.1.22) are satisfied. These inequalities are equivalent to the inequalities
(4.1.4) in the statement.
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Assume (4.1.4) holds. Given any height function h inducing the triangulation Γ,
by Theorem 2.2.11 there exists t0 in R>0 such that for all 0 < t < t0, the number of
positive nondegenerate solutions of the deformed system as in (2.2.5) with support
A and coefficient matrix Ct, with (Ct)ij = th(αj)cij (with αj ∈ A, C = (cij)), is at
least 2[n

2
] + 1. In particular if we choose h as in the proof of Lemma 4.1.8, there

exists t0 in R>0, such that for all 0 < t < t0, the system

s0 +
n−1∑
j=0

(
Tj

(Ftot)j+1
+
Kj Tj−1

(Ftot)j

)
t
j(j+1)

2 s0e
j+1 − Stot = 0, (4.1.23)

tne+
n−1∑
j=0

Kj Tj−1

(Ftot)j
t
j(j+1)

2 s0e
j+1 − Etot = 0,

has at least 2[n
2
] + 1 positive solutions. If we change the variable ē = tne, we get the

following system:

s0 +
n−1∑
j=0

(
Tj

(Ftot)j+1
+
Kj Tj−1

(Ftot)j

)
t(j+1)( j

2
−n)s0ē

j+1 − Stot = 0, (4.1.24)

ē+

n−1∑
j=0

Kj Tj−1

(Ftot)j
t(j+1)( j

2
−n)s0ē

j+1 − Etot = 0.

It is straightforward to check that if we scale the constants Kj by

tj−nKj , j = 0, . . . , n− 1, (4.1.25)

while keeping fixed the values of the constants kcatj
, νj for j = 0, . . . , n − 1 and

the values of the total conservation constants Etot, Ftot and Stot (assuming that
condition (4.1.4) holds), the intersection of the steady state variety and the total
conservation equations of the corresponding network is described by system (4.1.24).
It is easy to check that in order to get the scaling in (4.1.25), it is sufficient to rescale
only the original constants konj

as follows: tj−nkonj
, for j = 0, . . . , n − 1. Then, for

these choices of constants, the system has at least 2[n
2
] + 1 positive steady states.

Now, we will show how to obtain the more general rescaling in the statement. The
existence of the positive constants B1, . . . , Bn follows from the inequalities that de-
fine the cone CΓ of heights inducing the regular triangulation Γ and Theorem 2.2.13.
For instance, we can check that CΓ is defined by n inequalities:

CΓ = {h = (h1, . . . , hn+3) ∈ Rn+3 : 〈mj, h〉 > 0, j = 1, . . . , n},
where m1 = e1 − 2e3 + e4, mj = ej+1 − 2ej+2 + ej+3, for j = 2, . . . , n − 1 and
mn = e2 + en+1 − en+2 − en+3, where ei denotes the i-th canonical vector of Rn+3.
Fix ε ∈ (0, 1)n+3. As (4.1.4) holds, Theorem 2.2.13 says that there exist positive
numbers Bj for j = 1, . . . , n (depending on ε), such that the system

γ1s0 +
n−1∑
j=0

(
Tj

(Ftot)j+1
+
Kj Tj−1

(Ftot)j

)
γj+3s0e

j+1 − γn+3Stot = 0, (4.1.26)

γ2e+

n−1∑
j=0

Kj Tj−1

(Ftot)j
γj+3s0e

j+1 − γn+3Etot = 0,
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has at least 2[n
2
] + 1 nondegenerate positive solutions, for any vector γ ∈ Rn+3

satisfying γmj < Bj, for all j = 1, . . . , n. In particular, this holds if we take γ1 =
γ2 = γn+3 = 1 and

γ−2
3 γ4 < B1, γj+1γ

−2
j+2γj+3 < Bj, for j = 2, . . . , n− 1, γn+1γ

−1
n+2 < Bn. (4.1.27)

If we call λ0 = γ3 and λj =
γj+3

γj+2
for j = 1, . . . , n − 1, the inequalities in (4.1.27)

are equivalent to the conditions (4.1.5). Then, if λj, j = 0, . . . , n − 1, satisfy these
inequalities, the rescaling of the given parameters konj

by λjkonj
for j = 0, . . . , n− 1,

gives rise to a system with exactly 2[n
2
] + 1 positive steady states.

The proof of Theorem 4.1.4 is similar to the previous one.

Proof of Theorem 4.1.4. Again, the number of positive steady states of our system
is equal to the number of positive solutions of the system (4.1.12). Recall that the
support of the system is

A = {(1, 0), (0, 1), (1, 1), (1, 2), . . . , (1, n), (0, 0)} ⊂ Z2.

In this case, the coefficient matrix C (4.1.14) is equal, after multiplying the columns
by convenient positive numbers, to the matrix

Csimple =

(
1 0 M0 . . . Mn−1 −Stot
0 1 D0 . . . Dn−1 −Etot

)
,

where Mi =
kcati

νiFtot
+ 1 and Di = 1, for each i ∈ J , and Mi = 1 and Di = 0, for each

i /∈ J .
We consider again the regular triangulation Γ in Lemma 4.1.8. Recall that

J ⊂ Jn, see (4.1.6), and therefore each j ∈ J has the same parity as n, in particular
0 ≤ j ≤ n− 2. For each j ∈ J , consider the simplices ∆j = {(1, j), (1, j + 1), (0, 0)}
and ∆j+1 = {(1, j + 1), (1, j + 2), (0, 0)}. Note that if j 6= j′ then {∆j,∆j+1} and
{∆j′ ,∆j′+1} are disjoint since j, j′ and n have the same parity.

The simplices are positively decorated by Csimple (and then by C) if and only
if the submatrices

Csimplej =

(
1 Mj −Stot
0 1 −Etot

)
, Csimplej+1 =

(
Mj 1 −Stot
1 0 −Etot

)
,

are positively spanning, and this happens if and only if EtotMj − Stot < 0, where

Mj =
kcatj

νjFtot
+ 1, since j ∈ J . The simplex ∆n = {(0, 1), (1, n), (0, 0)} is trivially

positively decorated by Csimple. Then, by imposing the inequalities EtotMj−Stot <
0 for j ∈ J , which are equivalent to the ones in the statement (4.1.7), we can obtain
2|J |+ 1 positively decorated simplices.

Assume (4.1.7) holds. Given any height function h inducing the triangulation Γ,
by Theorem 2.2.11 there exists t0 in R>0, such that for all 0 < t < t0, the number
of positive nondegenerate solutions of the deformed system with support A and
coefficient matrix Ct, with (Ct)ij = th(αj)cij (with αj ∈ A, C = (cij)) is at least
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2|J |+ 1. In particular if we choose h as in the proof of Lemma 4.1.8, there exists t0
in R>0, such that for all 0 < t < t0, the system

s0 +
∑
j∈J

(
Tj

(Ftot)j+1
+
Kj Tj−1

(Ftot)j

)
t
j(j+1)

2 s0e
j+1 +

∑
j /∈J

Tj
(Ftot)j+1

t
j(j+1)

2 s0e
j+1 − Stot = 0, (4.1.28)

tne+
∑
j∈J

Kj Tj−1

(Ftot)j
t
j(j+1)

2 s0e
j+1 − Etot = 0,

has at least 2|J |+ 1 positive solutions. If we change the variable ē = tne, we get the
following system:

s0 +
∑
j∈J

(
Tj

(Ftot)j+1
+
Kj Tj−1

(Ftot)j

)
t(j+1)( j

2−n)s0ē
j+1+

+
∑
j /∈J

Tj
(Ftot)j+1

t(j+1)( j
2−n)s0ē

j+1 − Stot = 0, (4.1.29)

ē+
∑
j∈J

Kj Tj−1

(Ftot)j
t(j+1)( j

2−n)s0ē
j+1 − Etot = 0.

Similarly as we did in the previous proof, if we scale the original parameters konj
,

for j ∈ J , and τj if j /∈ J by

tj−nkonj if j ∈ J, tj−nτj if j /∈ J,

respectively, and if we keep fixed the values of the remaining rate constants and
the values of the total conservation constants Etot, Ftot and Stot, the intersection of
the steady state variety and the linear conservation relations is described by system
(4.1.29). Then, for these choices of constants the system GJ has at least 2|J | + 1
positive steady states. The general rescaling that appears in the statement can be
obtained in a similar way as we did in the proof of Theorem 4.1.2.

4.1.4 One intermediate is enough in order to obtain 2[n2 ] + 1
positive steady states in the n-site phosphorylation
system

Proposition 4.1.9 shows that having a single intermediate is enough to get 2[n
2
] + 1

positive steady states, for particular choices of the reaction rate constants. This
says that while Corollary 4.1.5 is optimal, the regions obtained for any subset J
with indexes of the same parity of n in Theorem 4.1.4 properly contained in Jn,
only ensure 2|J | + 1 positive steady states. However, note that we are able to
describe open regions in parameter space and Proposition 4.1.9 only allows us to get
choices of parameters. This computation by reduction to the univariate case is not
systematic as the general approach that we use to describe multistationarity regions
in Theorems 4.1.2 and 4.1.4, which can be applied to study other quite different
mechanisms. As we mentioned before, the following result has been independently
found by Elisenda Feliu (personal communication).

Proposition 4.1.9. If J = {0}, then there exists parameter values such that the
system GJ admits 2[n

2
] + 1 positive steady states.
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Proof. Assume n is even, then n + 1 is odd. As we did in the proof of Proposi-
tion 4.1.7, the positive solutions of the system (4.1.12) are in bijection with the
positive solutions of the polynomial q(e) in (4.1.21). Here β0 = K0 and βi = 0 for

i 6= 0. We will consider the polynomial q̃(e) := q(e)
Etot

, with constant coefficient equal
to −1.

Consider any polynomial of degree n+ 1

cn+1e
n+1 + cne

n + · · ·+ c1e− 1, (4.1.30)

with n + 1 distinct positive roots, and with constant term equal to −1. Then, we
have that ci(−1)i+1 > 0, and in particular, cn+1 > 0.

Our goal is to find reaction rate constants and total conservation constants such
that the polynomial (4.1.30) coincides with the polynomial q̃(e). Comparing the
coefficient of ei, for i = 1, . . . , n+ 1 in both polynomials, we need to have:

αn−1

Etot
= cn+1,

αi−2

Etot
− αi−1 = ci, for i = 3, . . . , n, (4.1.31)

α0 +K0

Etot
− α1 = c2,

1 + StotK0

Etot
− (α0 +K0) = c1.

Keep in mind that the values of ci are given. We may solve (4.1.31) in terms of Etot
and of the ci, i = 1, . . . , n+ 1 :

αn−1−k = Etot

k∑
i=0

cn+1−i (Etot)
k−i, for each k = 0, 1, . . . , n− 2,

α0 +K0 = Etot

n−1∑
i=0

cn+1−i (Etot)
n−1−i, (4.1.32)

1 + StotK0 = Etot

n∑
i=0

cn+1−i (Etot)
n−i.

Note that if we take any value for Etot > 0, then the values of αi for i = 1, . . . , n−1,
α0 + K0 and StotK0 are completely determined. So, we find an appropriate value
of Etot such that the previous values αi, K0 and Stot are all positive. For that, we
choose K0 = 1, and we take Etot large enough such that

k∑
i=0

cn+1−i (Etot)
k−i > 0, for each k ∈ {0, 1, . . . , n− 2} with k odd,

Etot

n−1∑
i=0

cn+1−i (Etot)
n−1−i > 1, Etot

n−1∑
i=0

cn+1−i (Etot)
n−i > 1.

This is possible since cn+1 > 0 and that imposing the first condition just on k odd
is enough to ensure that it holds for all k ∈ In−1 as well because of the signs of the
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ci. With these conditions, and using the equations (4.1.32), the values of αi for each
i = 0, . . . , n− 1 and Stot are determined and are all positive.

Now, it remains to show that we can choose reaction rate constants such that
the values of αi, i = 0, . . . , n− 1 are the given ones. Recall that αi = Ti

(Ftot)i+1 , where

Ti =
∏i

j=0
τj
νj

for i = 0, . . . , n − 1 and T−1 = 1, where τ0 = kcat0K0 = kcat0 (we

have chosen K0 = 1). Take for example Ftot = 1, kon0 = 2, koff0 = 1 and kcat0 = 1
(to obtain K0 = 1). Then, τ0 = 1, so we take ν0 = 1

α0
. As αi+1 = αi

τi+1

νi+1
, for

i = 0, . . . , n−2, we can choose any positive values of τi+1, νi+1 such that τi+1

νi+1
= αi+1

αi
,

and we are done.

When n is odd, with a similar argument, we can find reaction rate constants
and total conservation constants such that the polynomial q̃(e) gives a polynomial
like (4.1.30) (but with n distinct positive roots and one negative root).

4.2 Lifting regions of multistationarity

The main result in this section is Theorem 4.2.1, which is built on Theorem 4 in [42].
In this last paper, the authors proved that if a network has m non-degenerate stoi-
chiometrically compatible steady states, then any extended network that realizes the
rate constants has at least m non-degenerate stoichiometrically compatible steady
states. Here we present basically the same result, but also we describe more pre-
cisely regions in the space of parameters for which we can lift the steady states of the
reduced network to the original network. We apply this result to the subnetworks
GJ . In Theorem 4.2.2 we give precise conditions on the rate constants to lift the
regions of multistationarity for the subnetworks GJ to regions of multitationarity
with 2[n

2
] + 1 positive steady states (with fixed total conservation constants) of the

complete n-sequential phosphorylation cycle.

4.2.1 A result on lifting multistationarity

Before present the statement of Theorem 4.2.1, we introduce the following notation.
Consider a chemical reaction network G with mass-action kinetics. In order to
analyze steady states within a stoichiometric compatibility class, in this subsection
we use the conservation laws in place of redundant steady-state equations, as follows.
Recall that a conservation-law matrix W of G is row-reduced. Let I = {i1, . . . , id}
be the indices of the first nonzero coordinate of the rows of W , and assume that
i1 < i2 < · · · < id. Given c ∈ Rd and reaction rate constants κ, define the function
fc,κ : Rs

≥0 → Rs by

fc,κ,i = fc,κ(x)i =

{
fκ,i(x) if i 6∈ I,
(Wx− c)k if i = ik ∈ I,

(4.2.1)
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where fκ is the species formation rate function of G as in (1.1.4), with reaction rate
constants κ, that is:

fκ(x) =
∑

y→y′∈RG

κyy′x
y(y′ − y). (4.2.2)

We refer to system (4.2.1) as the system (4.2.2) augmented by conservation laws.
We present Theorem 4.2.1. Here we use the notation introduced in Section 1.3.

Theorem 4.2.1. Let G be a chemical reaction network, with set of species SG and
reaction rate constants κ0 = (κ0

yy′). Fix a subset of intermediate species I ⊂ SG.
Let G′ be the network obtained from G removing the intermediate species from I,
with reaction rate constants τ 0 = (τyy′(κ

0)) as in (1.3.4). Consider the fiber Fτ0 =
{κ > 0 : τ(κ) = τ 0} and the open set Wε = {κ > 0 : µi,y(κ) < ε ∀y ∈ CG′ , i =
1, . . . , p}, for any ε > 0, with µi,y as in (1.3.3). Fix c1, . . . , cd ∈ R and consider the
stoichiometric compatibility class Sc defined by the equations `1(x) = c1, . . . , `d(x) =
cd, where `1(x), . . . , `d(x) is a basis of conservations laws of the system associated
with G′.

Then,

1. Fτ0,ε := Fτ0 ∩Wε is a nonempty open set of Fτ0 for all ε > 0.

2. If G′ has m nondegenerate positive steady states in Sc, there exists ε0 > 0 such
that for all κ ∈ Fτ0,ε, with 0 < ε < ε0, there are at least m non degenerate
positive steady states of G with reaction rate constants κ in the stoichiometric
class of the system associated with G defined by ¯̀

1(x, u) = c1 . . . , ¯̀
d(x, u) = cd,

where ¯̀
1, . . . , ¯̀

d is a basis of conservation laws of the system associated with
G obtained from `1(x), . . . , `d(x) as in (1.3.2).

Proof. The proof is heavily based on the proof of Theorem 4 in [42]. Suppose
that the subset I has p intermediate species U1, . . . , Up, and the set of species SG

is ordered as: X1, . . . , Xn, U1, . . . , Up. Then the set of species of G′ is equal to
SG′ = {X1, . . . , Xn}.

The first part of the statement follows from a construction of reaction rate con-
stants given in the proof of Theorem 4 in [42]. That construction is the following.
Given the reaction rate constants κ0 = (κ0

yy′), for θ ∈ R>0 we define a new set

of rate constants κθ = (κθyy′) by κθyy′ = κ0
yy′/θ if y is an intermediate species of I

and κθyy′ = κ0
yy′ otherwise. In this case, by Theorem 2 and 3 in [42] (presented in

Section 1.3 in Chapter 1), and using the expressions of µi,y and τyy′ (1.3.4), we have:

µθi,y = θµi,y, τ
θ
yy′ = τ 0

yy′ ,

and so, κθ ∈ Fτ0 . If we take θ small enough, κθ ∈ Wε for given ε > 0, and then,
Fτ0,ε is a nonempty open set of Fτ0 for all ε > 0.

For the other part of the statement, first take W ′ a row reduced conservation-law
matrix of G′. We can assume that the set of indices of the first nonzero coordinates
of the rows of W ′ is I = {1, . . . , d}. This can be always be done, potentially by
reordering the set of species of G′. Then, a basis of conservation laws for G′ is
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`1(x) = w1 · x, . . . , `d(x) = wd · x, where w1, . . . , wd are the rows of W ′. By (1.3.2),
we have the following conservation laws for G: ¯̀

1(x, u) = `1(x) + a1
1u1 + · · · +

a1
pup, . . . ,

¯̀
d(x, u) = `d(x)+ad1u1 + · · ·+adpup, for certain values of aij, for i = 1, . . . , d,

j = 1, . . . , p.
Consider now the system augmented by conservation laws as in (4.2.1) corre-

sponding to the network G, with reaction rate constants κ and total conservation
constants c1, . . . , cd:

fc,κ(x, u) = (¯̀
1(x, u)− c1, . . . , ¯̀

d(x, u)− cd, fκ,d+1(x, u), . . . , fκ,n+p(x, u)), (4.2.3)

where fκ,i(x, u) is the i-th coordinate of the function fκ(x, u) as in (4.2.2), that is

fκ(x, u) =
∑

y→y′∈RG

κyy′(x, u)y(y′ − y).

Then, a vector (x, u) is a steady state of G for the reaction rate constants κ and for
the stoichiometric compatibility class defined by c1, . . . , cd, if and only if fc,κ(x, u) =
0.

Analogously, we consider the system augmented by conservation laws as in (4.2.1)
corresponding to the network G′. A vector x is a steady state of G′ for reaction rate
constants τ in the stoichiometric compatibility class defined by c1, . . . , cd if and only
if x is zero of the following function:

gc,τ (x) = (`1(x)− c1, . . . , `d(x)− cd, gτ,d+1(x), . . . , gτ,n(x)), (4.2.4)

where
gτ (x) =

∑
y→y′∈RG′

τyy′x
y(y′ − y).

We rewrite the function fc,κ(x, u) in an equivalent form. By Theorem 2 in [42],
fκ,n+1(x, u) = 0, . . . , fκ,n+p(x, u) = 0 if and only if ui =

∑
y∈CG′

µi,yx
y for each

i = 1, . . . , p. Then, we replace the expression fκ,n+i(x, u) by ui −
∑

y∈CG′
µi,yx

y,

for i = 1, . . . , p and replace the variables uj by the expression
∑

y∈CG′
µj,yx

y in the

functions fc,κ,i(x, u) for i ≤ n. We obtain the function Fc,κ(x, u), where

Fc,κ,i(x, u) =

{
fc,κ,i(x,

∑
y∈CG′

µ1,yx
y, . . . ,

∑
y∈CG′

µp,yx
y), i = 1, . . . , n,

ui −
∑

y∈CG′
µi,yx

y, i = n+ 1, . . . , n+ p.
(4.2.5)

The zeros of system (4.2.3) are in one-to-one correspondence with the zeros of sys-
tem (4.2.5). Furthermore, in the proof of Theorem 4 in [42], it is shown that the
Jacobian matrix of fc,κ evaluated at (x, u) is nonsingular if and only if the Jacobian
matrix of Fc,κ evaluated at (x, u) is nonsingular. Then, the nondegenerate steady
states of G are the solutions of Fc,κ(x, u) = 0, for which the Jacobian matrix is
nonsingular.

By construction we have:

Fc,κ,i(x, u) =


gc,τ,i(x) +

∑p
j=1 a

i
n+j

∑
y µj,yx

y, i = 1, . . . , d,

gc,τ,i(x), i = d+ 1, . . . , n,
ui −

∑
y∈CG′

µi,yx
y, i = n+ 1, . . . , n+ p.
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Assume now that G′ has m nondegenerate positive steady states x(i) ∈ Rn
>0,

i = 1, . . . ,m in the stoichiometric compatibility class defined by the total amounts
c1, . . . , cd, and for the reaction rate constants τ(κ0) = τ 0.

We consider all the nonzero coefficients µi,y, for all i = 1, . . . , p and all complexes
y ∈ G′, and let N be the number of nonzero µi,y coefficients. Let µ ∈ RN

>0 be the
vector which coordinates are the µi,y, in some order.

For fixed c1, . . . , cd, we can think the function Fc,κ(x, u) depending only on the
parameters τ and µ, and not in κ. With τ 0 fixed, if we choose values of κ such that
κ ∈ Fτ0 , we can consider the function Fc,κ(x, u) depending only on µ. In that case,
we can rewrite Fc,κ(x, u) = Fµ(x, u).

That is, for each µ we consider the function Fµ(x, u):

Fµ,i(x, u) =


gc,τ0,i(x) +

∑p
j=1 a

i
n+j

∑
y µj,yx

y, i = 1, . . . , d,

gc,τ0,i(x), i = d+ 1, . . . , n,
ui −

∑
y∈CG′

µi,yx
y, i = n+ 1, . . . , n+ p.

We observe that the Jacobian matrix of Fµ in (x, u) is of the form:

J(x,u)(Fµ) =

(
Jx(gc,τ0) +A 0

B Ip

)
,

where A and B are matrices that are zero when are evaluated at µ = 0.
By continuity, the function Fµ is well defined for all µ ∈ RN and is differentiable,

so we can consider the following map:

F : Rn × Rp × RN → Rn+p

(x, u, µ) 7→ F (x, u, µ) := Fµ(x, u).

For µ = 0, F (x(i), 0, 0) = 0, because gc,τ0(x(i)) = 0 for all i = 1, . . . ,m. And the
Jacobian matrix of F0 has the form:

J(x,u)(F0) =

(
Jx(gc,τ0) 0

0 Ip

)
.

Since the steady states x(i) are nondegenerate, Jx(gc,τ0) evaluated at x(i) is non-
singular for each i = 1, . . . ,m. Then, J(x,u)(F0) evaluated at (x(i), 0) is nonsin-
gular for each i = 1, . . . ,m. By the Implicit Function Theorem applied to F
at (x(i), 0, 0), there exists an open set Ui ∈ RN , with 0 ∈ Ui, and an open set
Vi ∈ Rn × Rp, with (x(i), 0) ∈ Vi such that for all µ ∈ Ui, there is a steady state
(x(i)(µ), u(i)(µ)) ∈ Vi in the stoichiometric compatibility class defined by c1, . . . , cd,
with (x(i)(0), u(i)(0)) = (x(i), 0).

Because x(i) > 0 and x(i) is a nondegenerate steady state, we can take the open
set Ui such that x(i)(µ) > 0 and J(x(i)(µ),u(i)(µ))(Fµ) is nonsingular for all µ ∈ Ui.

We take U+
i = Ui ∩ RN

>0. Since x(i)(µ) > 0, it follows that u(i)(µ) > 0 for all
µ ∈ U+

i , by construction. Then (x(i)(µ), u(i)(µ)) is a nondegenerate positive steady
state of G in the stoichiometric class defined by c1, . . . , cd. Because the x(i) are
distinct, we can choose the open sets Ui (smaller if needed, contained in the original
Ui) such that ∩mi=1Vi = ∅.
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Now we take U = ∩mi=1U+
i . Then, for all µ ∈ U , the original network G has m

nondegenerate positive steady states (x(i)(µ), u(i)(µ)), i = 1, . . . ,m in the stoichio-
metric compatibility class defined by c1, . . . , cd, for all the constants κ ∈ Fτ0 with
|µi,y(κ)| << 1 (small enough such that µ(κ) ∈ U).

4.2.2 Application to the n-site phosphorylation system

Multistationarity of any of the subsystems GJ can be extended to the full n-site
phosphorylation system for instance, by Theorem 4 in [42]. We give a precise state-
ment of this result in Corollary 4.2.2, using Theorem 4.2.1.

Consider the full n-site phosphorylation network (1.2.2), with a given vector of
reaction rate constants κ ∈ R6n:

κ = (kon0 , koff0 , kcat0 , . . . , konn−1 , koffn−1 , kcatn−1 , `on0 , `off0 , `cat0 , . . . , `onn−1 , `offn−1 , `catn−1).

We define the following rational functions of κ (as in (1.3.4)):

τj(κ) = kcatj µj(κ) if j /∈ J and νj(κ) = `catj ηj(κ) for j = 0, . . . , n− 1, (4.2.6)

where µj(κ) and ηj(κ) are in turn the following rational functions:

µj(κ) =
konj

koffj
+ kcatj

if j /∈ J and ηj(κ) =
`onj

`offj
+ `catj

for j = 0, . . . , n− 1. (4.2.7)

Note that these last rational functions are the functions µi,y(κ) as in Section 1.3 in

Chapter 1. We denote by ϕ : R6n
>0 → R2n+2|J |

>0 the function that takes κ and gives
a vector of (positive) reaction rate constants with the following order: first, the
constants konj

, koffj
, kcatj

, j ∈ J , then τ(κ), j /∈ J , and then νj(κ), j = 0, . . . , n− 1.
Given a subset J ⊂ In and a vector of reaction rate constants κ ∈ R6n

>0, we

consider the subnetwork G
ϕ(κ)
J as in Definition 4.1.1, with rate constants ϕ(κ):

Sj + E

konj−→
←−
koffj

Yj
kcatj→ Sj+1 + E, if j ∈ J

Sj + E
τj(κ)
→ Sj+1 + E, if j /∈ J (4.2.8)

Sj+1 + F
νj(κ)
→ Sj + F, 0 ≤ j ≤ n− 1.

As a consequence of Theorem 4.2.1 we get the following lifting result.

Corollary 4.2.2. Consider the full n-site phosphorylation network (1.2.2) with

fixed reaction rate constants κ0 and the network G
ϕ(κ0)
J , both with total conservation

amounts Stot, Etot, Ftot > 0. Suppose that system G
ϕ(κ0)
J admits m nondegenerate

positive steady states.
Then, there exists ε0 > 0 such that for any choice of rate constants κ such that

ϕ(κ) = ϕ(κ0) and
max
j /∈J

µj(κ), max
j∈In

ηj(κ) < ε0, (4.2.9)
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the n-site sequential phosphorylation system admits m positive nondegenerate steady
states in the stoichiometric compatibility class defined by Stot, Etot and Ftot >
0. Moreover, the set of rate constants κ verifying ϕ(κ) = ϕ(κ0) and (4.2.9) is
nonempty.

Note that the function ϕ is surjective, that is, any vector of reaction rate con-
stants for the reduced network GJ can be obtained as ϕ(κ), for some vector κ of re-
action rate constants of the full n-site phosphorylation network. For instance, given
τj ∈ R>0, we can take konj

= 2τj, koffj
= kcatj

= 1, and then τj(κ) = τj. Similarly,
we can do this for the other reaction rate constants of GJ . Then, Corollary 4.2.2
allows us to obtain multistationary regions for the complete n-site phosphorylation
system, combining the conditions on the parameters given in Theorem 4.1.2 and The-
orem 4.1.4, with conditions (4.2.9) of Corollary 4.2.2. In particular, let Jn ⊂ In as
in (4.1.6). By lifting a multistationarity region for the system GJn in Corollary 4.1.5,
we get a multistationarity region of parameters of the n-site phosphorylation cycle
with 2[n

2
] + 1 positive steady states in the same stoichiometric compatibility class.

Appendix: Computer aided results

The algorithms and computations that give rise to the computed aided results pre-
sented in this appendix, were implemented by Rick Rischter. The files with the
computations are available at: http://mate.dm.uba.ar/~alidick/DGRPMFiles/.

In this appendix we explore a computational approach to the multistationarity
problem, more precisely we find new regions of multistationarity, using the method
develop in Chapter 2. We first give the idea and then apply it for the n-site phos-
phorylation system for n = 2, 3, 4, and 5, where we have successfully found several
regions of multistationarity. This approach can be, in principle, applied to other
systems if they satisfy certain hypotheses (see Theorem 2.5.2 in Chapter 2), and are
sufficiently small in order for the computations to be done in a reasonable amount
of time.

The strategy is the following. Given a polynomial system with support A and
matrix of coefficients C, one first computes all possible regular triangulations of A
with the aid of a computer. The number of such triangulations can be very large
depending on the size of A, thus the next step is to discard in each such triangulation
the simplices that obviously will not be positively decorated by C. With the reduced
number of triangulations one can now search through all of them for the ones giving
the biggest number of simultaneously positively decorated simplices. Each set of
k simultaneously positively decorated simplices gives a candidate for a region of
multistationarity with k positive steady states. If one finds m of such sets, then it
is possible to have up to m such regions. Have in mind, however, that among these
regions can be repetitions.

Next we apply this to the n-site phosphorylation system with all intermediates
and explain more concretely this procedure in this case.

Consider G of the n-site phosphorylation system with all possible intermediates,

http://mate.dm.uba.ar/~alidick/DGRPMFiles/
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as in (1.2.2). Consider the parametrization (2.4.3) of the concentration at steady
state of all species in terms of the species s0, e, f .

We replace this parametrization into the conservation laws (1.2.4), as we did in
Section 2.4, and we consider that system. The support A of this system, which has
2n + 4 elements, ordering the variables as s0, e, f, is given by the columns of the
following matrix:

A =

 1 0 0 1 . . . 1 1 1 . . . 1 0
0 1 0 1 . . . n 1 2 . . . n 0
0 0 1 −1 . . . −n 0 −1 . . . 1− n 0

 ,

and the corresponding matrix of coefficients for the system is:

C =

(
1 0 0 T0 . . . Tn−1 K0 + L0T0 . . . Kn−1Tn−2 + Ln−1Tn−1 −Stot

0 1 0 0 . . . 0 K0 . . . Kn−1Tn−2 −Etot

0 0 1 0 . . . 0 L0T0 . . . Ln−1Tn−1 −Ftot

)
.

Recall that if one multiplies a column of a matrix C by a positive number, then
a simplex is positively decorated by C if and only if it is positively decorated by
the modified matrix. So, in order to test whether a simplex with vertices in A
is positively decorated by C is enough to test if it is positively decorated by the
following matrix

Csimple =

1 0 0 1 . . . 1 1 1 . . . 1 −Stot
0 1 0 0 . . . 0 N0 N1 . . . Nn−1 −Etot
0 0 1 0 . . . 0 1−N0 1−N1 . . . 1−Nn−1 −Ftot

 ,

where 0 < Ni =
KiTi−1

KiTi−1 + LiTi
=

(
1 +

kcati

lcati

)−1

< 1 for i = 0, 1, . . . , n−1. Here the

matrix Csimple is obtained by dividing the fourth until the last column by its first
entry.

Now we compute all possible regular triangulations ofA and search through them
looking for the ones with the maximal possible number of simplices simultaneously
positively decorated by Csimple. Since the number of such triangulations grows
very fast with n we approach it with the following strategy:

Algorithm 4.2.3. (1) Compute L1 := {all possible regular triangulations of A}.1

(2) With L1 compute L2 by discarding all simplices which do not have the last
vertex (0, 0, 0). In fact we only need these simplices since a simplex not contain-
ing the last vertex cannot be positively decorated, because the corresponding
coefficients of Csimple will be all positive.

(3) Compute L3 from L2 by removing all simplices with the corresponding 3 × 4
submatrix of Csimple having a zero 3× 3 minor. The reason for this is clear,
such simplices will never be positively decorated by Csimple.

1We are calling L1, . . . , L7 the sets defined in Algorithm 4.2.3. They are completely unrelated
to the rational functions of the rate constants denoted with the same letters.
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(4) Compute L4 from L3 using the symmetry of Csimple. More precisely, change
any index 4, 5, . . . , n + 3 on the simplex to 1 because on Csimple they yield
the same column. Here we are using the easy-to-check fact that changing the
order of indexes does not change the conditions for a simplex to be positively
decorated.

(5) Compute L5 from L4 removing all T ∈ L4 such that there is another T ′ ∈ L4

with T ⊂ T ′.

(6) For each T ∈ L5, check for each set S ⊂ T of simplices if there is viable
N0, . . . , Nn−1 such that all ∆ ∈ S is positively decorated by Csimple at the
same time, call L6 the list of such S ′s.

(7) If the maximum size of a element in L6 is k, set L7 := {T ∈ L6 : #T = k}.
This k is the number of positive steady states and m := #L7 is the number of
candidates for regions of multistationarity.

Step (1) can be done with the package TOPCOM inside SAGE [100], the other
steps are quite simple to implement, for instance in MAPLE [75]. We show in the
table below the number of elements in some of the lists and an approximation of the
computation time for small values of n.

n #L1 #L2 #L3 #L4 #L5 #L7 k
regions of

multistationarity
computation time

2 44 25 15 7 6 1 3 1 negligible
3 649 260 100 21 18 6 3 6 about 1 sec
4 9094 2728 682 62 53 5 5 4 about 2 min
5 122835 28044 4560 177 149 23 5 15 about 3 hours

The most computationally expensive part is to compute all regular triangula-
tions, taking at least 90% of the time. These computations were done in a Linux
virtual machine with 4MB of RAM and with 4 cores of 3.2GHz of processing. With
a faster computer or more time one probably can do n = 6 or even n = 7 but
probably not much more than this. For n = 5 just the file for the raw list L1 of
regular triangulations already has 10Mb.

An alternative path to Steps (6) and (7) is to set a number k and look for sets
T ∈ L5 and S ⊂ T with #S ≥ k such that there is viable N0, . . . , Nn−1 such that all
∆ ∈ S are positively decorated by Csimple at the same time. We actually used this
with k = 2[n

2
] + 1. This other route depends upon a good guess one may previously

have at how many positive steady states to expect.
After Step (7) one has to determine if there are any repetitions among the can-

didates for regions of multistationarity in L7 and also if there are any superfluous
candidates of regions, that is conditions C1 and C2 such that C1 implies C2. In our
case we did it by hand since the #L7 was quite small.

Once Step (7) is done, one has a list of inequalities for each element S of L7.
These come from the conditions imposing that the simplices in S are positively
decorated by Csimple. We are going to use these conditions to describe the regions of
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mulstistationarity. Because of the uniformity of Csimple the only kind of conditions
that appear are

(I)i,j Ni −Nj > 0

(II)i StotNi − Etot > 0

(III)i EtotNi + FtotNi − Etot > 0

(IV)i −StotNi − Ftot + Stot > 0

(V) Stot > Etot + Ftot,

or the opposite inequalities, and these translate from the Ni to the kcati
, `cati

as
follows

(I)′i,j
kcatj

`catj
>

kcati
`cati

(II)′i
Stot−Etot
Etot

>
kcati
`cati

(III)′i
Ftot
Etot

>
kcati
`cati

(IV)′i
Ftot

Stot−Ftot <
kcati
`cati

.

Note that

• conditions (III)i and (V) together imply (II)i;

• the opposite of condition (II)i together with condition (V) imply the opposite
of (III)i;

• the opposite of condition (III)i together with condition (V) imply (IV)i;

• the opposite of condition (IV)i together with condition (V) imply (III)i;

• condition (III)i and the opposite of (III)j together imply (I)i,j.

Using these properties it is easy to describe in a nice manner the regions of
multistationarity and discard the repeated and superfluous ones. We sum up our
findings on the following results which are proved in the same fashion as Theo-
rems 4.1.2 and 4.1.4, once you have the regular triangulation obtained with the
computer script. In the following propositions we describe the regions of multista-
tionarity for n = 2, 3, 4 and 5. Here we used that the rescaling of some of parameters
can be done, using Theorem 2.5.2.

Proposition 4.2.4. Let n = 2. Assume that Stot > Etot+Ftot. Then there is a choice
of reaction rate constants for which the distributive sequential 2-site phosphorylation
system admits 3 positive steady states. More explicitly, given rate constants and total
concentrations such that

kcat0

`cat0

<
Ftot
Etot

<
kcat1

`cat1

,

after rescaling of the kon’s and `on’s the distributive sequential 2-site phosphorylation
system has 3 positive steady states.
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Proposition 4.2.5. Let n = 3. Assume that Stot > Etot + Ftot. Then, there is a
choice of rate constants for which the distributive sequential 3-site phosphorylation
system admits at least 3 positive steady states. More explicitly, if the rate constants
and total concentrations are in one of the regions described below

(R3.1)
kcat0

`cat0

<
Ftot
Etot

<
kcat1

`cat1

,

(R3.2)
kcat0

`cat0

<
Ftot
Etot

<
kcat2

`cat2

,

(R3.3)
kcat1

`cat1

<
Ftot
Etot

<
kcat2

`cat2

,

then after rescaling of the kon’s and `on’s the distributive sequential 3-site phospho-
rylation system has at least 3 positive steady states.

Proposition 4.2.6. Let n = 3. If the rate constants and total concentrations are
in one of the regions described below

(R3.4) max

{
Ftot
Etot

,
Ftot

Stot − Ftot

}
< min

{
kcat0

`cat0

,
kcat2

`cat2

}
, Stot > Ftot,

(R3.5) max

{
Ftot
Etot

,
Ftot

Stot − Ftot

}
< min

{
kcat1

`cat1

,
kcat2

`cat2

}
, Stot > Ftot,

(R3.6) min

{
Ftot
Etot

,
Stot − Etot

Etot

}
> max

{
kcat1

`cat1

,
kcat2

`cat2

}
, Stot > Etot,

then after rescaling of the kon’s and `on’s the distributive sequential 3-site phospho-
rylation system has at least 3 positive steady states.

Proposition 4.2.7. Let n = 4. Assume that Stot > Etot + Ftot. Then, there is a
choice of rate constants for which the distributive sequential 4-site phosphorylation
system has at least 5 steady states. More explicitly, if the rate constants and total
concentrations are in one of the regions described below

(R4.1)
kcat2

`cat2

<
Ftot
Etot

< min

{
kcat1

`cat1

,
kcat3

`cat3

}
,

(R4.2)
kcat0

`cat0

<
Ftot
Etot

< min

{
kcat1

`cat1

,
kcat3

`cat3

}
,

(R4.3) max

{
kcat0

`cat0

,
kcat2

`cat2

}
<
Ftot
Etot

<
kcat3

`cat3

,

(R4.4) max

{
kcat0

`cat0

,
kcat2

`cat2

}
<
Ftot
Etot

<
kcat1

`cat1

,

then after rescaling of the kon’s and `on’s the distributive sequential 4-site phospho-
rylation system has at least 5 steady states.
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Proposition 4.2.8. Let n = 5. Assume that Stot > Etot + Ftot. Then, there is a
choice of rate constants for which the distributive sequential 5-site phosphorylation
system has at least 5 steady states. More explicitly, if the rate constants and total
concentrations are in one of the 13 regions described below

(R5.(I,J)) max
i∈I

{
kcati

`cati

}
<
Ftot
Etot

< min
j∈J

{
kcatj

`catj

}
,

with (I, J) in the following list (where we write e.g. 14 instead of {1, 4}):

(0, 14), (0, 24), (1, 24), (2, 13), (2, 14), (3, 14), (3, 024), (02, 3), (02, 4), (03, 1), (03, 2), (13, 2), (13, 4),

then after rescaling of the kon’s and `on’s the distributive sequential 5-site phospho-
rylation system has at least 5 steady states.

Proposition 4.2.9. Let n = 5. If the rate constants and total concentrations are
in one of the regions described below

(R5.1) max

{
Ftot
Etot

,
Ftot

Stot − Ftot

}
< min

{
kcat1

`cat1

,
kcat2

`cat2

,
kcat4

`cat4

}
, Stot > Ftot,

(R5.2) min

{
Ftot
Etot

,
Stot − Etot

Etot

}
> max

{
kcat0

`cat0

,
kcat2

`cat2

,
kcat3

`cat3

}
, Stot > Etot,

then after rescaling of the kon’s and `on’s the distributive sequential 5-site phospho-
rylation system has at least 5 positive steady states.

Note that the conditions in this section describe different regions from the ones
described by the inequalities in Theorem 4.1.2 and Theorem 4.1.4. For instance,
in Propositions 4.2.4, 4.2.5, 4.2.7, 4.2.8 the inequalities between the reaction rate
constants and total conservations constants do not involve the value of Stot. In
Propositions 4.2.6 and 4.2.9, the conditions onse the total conservation constants
are also different (e.g. on Ftot

Etot
and Stot

Etot
−1 instead of the product Ftot(

Stot
Etot
−1)). The

inequalities in Theorem 4.1.2 and Theorem 4.1.4 hold for reactions rate constants of
a reduced system GJ , but if we use Theorem 4.2.2 to extrapolate these conditions
to the full n-site phosphorylation network, the regions are different as well.



Chapter 5

Sign conditions for the existence
of at least one positive solution of
a sparse polynomial system

Deciding whether a real polynomial system has a positive solution is a basic question,
that is decidable via effective elimination of quantifiers [4]. There are few results
on lower bounds of the number of real or positive roots of polynomial systems (see
e.g. [7, 93, 94, 107]). In this chapter, we give sign conditions on the support and
coefficients of a sparse system of d generalized polynomials (that is, polynomials
with real exponents, for which the positive solutions are well defined) in d variables,
that guarantee the existence of at least one positive real root, based on degree theory
and Gale duality.

We fix an exponent set A = {a1, . . . , an} ⊂ Rd of cardinality n and for any
given real matrix C = (cij) ∈ Rd×n we consider the associated sparse generalized
multivariate polynomial system in d variables x = (x1, . . . , xd) with support A:

fi(x) =
n∑
j=1

cijx
aj = 0 , i = 1, . . . , d. (5.0.1)

We will be interested by the existence of the positive solutions of (5.0.1) in Rd
>0.

Denoting by nA(C) the (possibly infinite) number of positive real solutions of the
system (5.0.1), our main goal is to give sufficient conditions on the exponent set A
and the coefficient matrix C that ensure that nA(C) > 0. When A ⊂ Zd we will
consider the existence of solutions in the real torus (R∗)d of points in Rd with nonzero
coordinates, and we will relate our conditions to well-studied algebraic properties of
lattice ideals associated with the configuration A.

In applications, for example, in the context of chemical reaction networks, lower
bounds of positive roots of polynomial systems guarantee the existence of (stoichio-
metrically compatible) positive steady states. In [80], sign conditions are used to
decide if a family of polynomial systems associated with a given reaction network
cannot admit more than one positive solution for any choice of the parameters and,

103
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in this case, conditions for the existence of one positive solution are given as a corol-
lary of a result from [82], based on degree theory. Our point of view of searching for
conditions on the exponent and the coefficient matrices of the system comes from
this paper. As we do not assume injectivity (at most one root), we cannot use tools
from these papers or the more recent article [81], as Hadamard’s theorem.

In [12] the authors use degree theory in the study of chemical reaction networks
to describe parameters for which there is a single positive solution or for which the
network is multistationary. We apply some of these techniques in a Gale duality
setting, more precisely, based on Theorem 5.2.1, which is version of a particular
case of Theorem 2 in the Supplementary Information of [12].

We can use different convex sets to apply Theorem 5.2.1. The first one which
comes in mind is the positive orthant, which is not bounded. Another natural idea is
to consider the Newton polytope of the polynomials in the system, or some dilates of
it. This is reasonable since it is completely determined by the monomials appearing
in the system. In this chapter, we use another convex polytope which seems natural
since it is determined by the coefficients of the system. This polytope is obtained
using the Gale duality trick for polynomial systems that was studied by Bihan and
Sottile in [8], see also [9]. We can think of this polytope as a “shadow” of the
positive orthant via Gale duality, which has the advantage that it can be chosen to
be bounded.

The chapter is organized as follows. In Section 5.1 we recall the notion of Gale
duality and the basic duality of solutions (see Theorem 5.1.5), and we introduce
useful notation as well as the necessary condition (5.1.3). In Section 5.2, we recall
the basic concepts of degree theory and we present our main result Theorem 5.2.7,
which gives conditions on the Gale duality side to guarantee the existence of positive
solutions.

In the following sections we give sufficient conditions on the support and the
matrix of coefficients that ensure that Theorem 5.2.7 can be applied. In Section 5.3,
we consider the notion of mixed dominating matrices from [46] to get Theorem 5.3.6.
In Section 5.4, we give geometric conditions on A and C that guarantee that the
hypotheses of Theorem 5.2.7 are satisfied, see Theorem 5.4.8. In Section 5.5, we con-
centrate our study on integer configurations A; we relate the dominance conditions
to algebraic conditions that emerged in the study of toric ideals, and we naturally
extend in this case our study to the existence of solutions in the real torus (R∗)d.

5.1 Gale duality for positive solutions of polyno-

mial systems

We first present basic definitions and results on Gale duality. Given a matrix M ∈
Rr×s of maximal rank r, a Gale dual matrix of M is any matrix N ∈ Rs×(s−r) of
maximal rank whose columns vectors are a basis of the kernel of M . Clearly a
Gale dual matrix is not unique as it corresponds to a choice of a basis: it is unique
up to right multiplication by an invertible (s − r) × (s − r) matrix. We will also
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say that the s row vectors of N define a Gale dual configuration in Rs−r to the
configuration in Rr defined by the s column vectors of M . We will introduce a Gale
dual system (5.1.8) and polyhedra ∆P (5.1.7), depending on the choice of a Gale
dual matrix to the coefficient matrix C. We will then recall Theorem 5.1.5, which
gives a fundamental link between the positive real roots of system (5.0.1) and the
solutions in ∆P of the Gale dual system (5.1.8).

5.1.1 The matrix A

Let A = {a1, . . . , an} be a finite subset of Rd of cardinality n and C = (cij) ∈ Rd×n.
As we mentioned at the beginning of the chapter, we are interested in the solvability
of the associated sparse generalized multivariate polynomial system (5.0.1) in d
variables x = (x1, . . . , xd) with support A and coefficient matrix C.

Note that if we multiply each equation of system (5.0.1) by a monomial (i.e, we
translate the configuration A), the number of positive real solutions does not change,
and then nA(C) is an affine invariant of the point configuration A. It is then natural
to consider the matrix A ∈ R(d+1)×n with columns (1, a1), (1, a2), . . . , (1, an) ∈ Rd+1 :

A =

(
1 . . . 1
a1 . . . an

)
. (5.1.1)

We will refer to the matrix A as the corresponding matrix of the point configuration
A.

We will always assume that C is of maximal rank d and A is of maximal rank
d + 1. Then, we need to have n ≥ d + 1. If equality holds, it is easy to see that
system (5.0.1) has a positive solution if and only if the necessary condition (5.1.3)
holds. So we will suppose that n ≥ d+ 2.

We denote by k = n − d − 1 the codimension of A (and of A). Note that the
codimension of C equals k+1. Let B = (bij) ∈ Rn×k be a matrix which is Gale dual
to A, and let D = (dij) ∈ Rn×(k+1) be any a matrix which is Gale dual to C. We will
number the columns of B from 1 to k and the columns of D from 0 to k and denote
by P1, . . . , Pn ∈ Rk+1 the row vectors of D, that is, the Gale dual configuration to
the columns of C.

5.1.2 A necessary condition

There is a basic necessary condition for nA(C) to be positive. Denote by C1, . . . , Cn ∈
Rd the column vectors of the coefficient matrix C and call

C◦ = R>0C1 + · · ·+ R>0Cn, (5.1.2)

the positive cone generated by them. Given a solution x ∈ Rd
>0 of system (5.0.1),

the vector (xa1 , . . . , xan) is positive and so the origin 0 ∈ Rd belongs to C◦. Then,
necessarily

0 ∈ C◦. (5.1.3)
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It is a well-known result that Condition (5.1.3) holds if and only if the vectors
P1, . . . , Pn lie in an open halfspace through the origin. Note that Condition (5.1.3),
together with the hypothesis that C is of maximal rank d, is equivalent to C◦ = Rd.

5.1.3 Defining cones and polytopes in Gale dual space

We also define other cones that we will use. Denote by

CP = R>0P1 + · · ·+ R>0Pn, (5.1.4)

the positive cone generated by the rows of a Gale dual matrix D and let

CνP = {y ∈ Rk+1 : 〈Pi, y〉 > 0, i = 1, . . . , n}, (5.1.5)

be its dual open cone. Note that if C has maximal rank d and Condition (5.1.3)
holds, the cone CP is strictly convex. Therefore, its dual open cone CνP is a nonempty
full dimensional open convex cone. We will also consider the closed cone

CP = R≥0P1 + · · ·+ R≥0Pn. (5.1.6)

The following Lemma is straightforward.

Lemma 5.1.1. Assume that C has maximal rank d and that 0 ∈ C◦. Then for any
nonzero u ∈ CP and any c ∈ R>0, the polytope CνP ∩ {y ∈ Rk+1 : 〈u, y〉 = c} has
dimension k. Moreover, this polytope is bounded if and only u ∈ CP .

Define
∆P = CνP ∩ {y ∈ Rk+1 : y0 = 1}. (5.1.7)

Corollary 5.1.2. Assume that C has maximal rank and that 0 ∈ C◦ and let D is
a Gale dual matrix of C, then (1, 0, . . . , 0) ∈ CP if and only if ∆P has dimension k
and is bounded.

We next show that we can always find a Gale matrix D such that ∆P is nonempty
and bounded.

Lemma 5.1.3. Assume that C has maximal rank. Then there is a Gale dual matrix
D of C such that (1, 0, . . . , 0) ∈ CP .

Proof. Start with any Gale dual matrix D of C and pick any vector u ∈ CP . Then
there is an invertible matrix R ∈ R(k+1)×(k+1) such that u ·R = (1, 0, . . . , 0), where u
is written as a row vector. Consider the matrix D′ = DR and denote by P ′1, . . . , P

′
n

its row vectors. Then D′ is Gale dual to C, and (1, 0, .., 0) ∈ CP ′ = R>0P
′
1 + · · · +

R>0P
′
n.

To any choice of Gale dual matrices B and D of A and C respectively, we
associate the following system with unknowns y = (y0, . . . , yk):

Gj(y) =
n∏
i=1

〈Pi, y〉bij = 1, j = 1, . . . , k, (5.1.8)
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which is called a Gale dual system of (5.0.1). Another choiceD′ of a Gale dual matrix
for C corresponds to another choice y′ of linear coordinates for Rk+1: if D′ = DR
with R ∈ R(k+1)×(k+1) invertible, then setting y′ = R−1(y) we get D′y′ = Dy, where
y and y′ as considered as column vectors. Another choice B′ of a Gale dual matrix
for A gives an equivalent Gale system H1, . . . , Hk, where for each j there exists
exponent (µ1, . . . , µk) such that Hj = Gµ1

1 . . . Gµk
k .

Note that (5.1.8) is homogeneous of degree zero since the columns of B sum up
to zero. For any cone C ∈ Rn with apex the origin, its projectivization PC is the
quotient space C/ ∼ under the equivalence relation ∼ defined by: for all y, y′ ∈ C,
we have y ∼ y′ if and only if there exists α > 0 such that y = αy′.

We will often use the following observation.

Remark 5.1.4. If (1, 0, . . . , 0) ∈ CP , then CνP is contained in the open halfspace
defined by y0 > 0 and thus the map (y0, y1, . . . , yk) 7→ (1, y1/y0, . . . , yk/y0) induces
a bijection between PCνP and ∆P .

5.1.4 The equivalence of solutions

Here is a slight variation of Theorem 2.2 in [8].

Theorem 5.1.5. There is a bijection between the positive solutions of the initial sys-
tem (5.0.1) and the solutions of the Gale dual system (5.1.8) in PCνP , which induces
a bijection between the positive solutions of (5.0.1) and the solutions of (5.1.8) in
∆P when (1, 0, . . . , 0) ∈ CP .

Proof. If x ∈ Rd
>0 is a solution of the system (5.0.1), then (xa1 , . . . , xan) belongs to

ker(C) ∩ Rn
>0. Thus, there exists y ∈ Rk+1 (which is unique since D has maximal

rank) such that xai = 〈Pi, y〉 for i = 1, . . . , n. Then, y ∈ CνP and y is a solution of
the Gale dual system (5.1.8). If furthermore (1, 0, . . . , 0) ∈ CP , then dividing by y0

if necessary, a solution y ∈ CνP of (5.1.8) gives a solution of the same system in ∆P

because it is homogeneous of degree zero.
We showed in Remark 5.1.4 that the previous map is bijective by giving explicitly

its inverse map. Now, let y ∈ CνP be a solution of (5.1.8). Let (e1, . . . , ed) be the
canonical basis of Rd. Since A has maximal rank, there exists αj = (α1j, . . . , αnj) ∈
Rn , for j = 1, . . . , d, such that ej =

∑n
i=1 αijai. To any column vector z ∈ Rk+1, we

associate the vector D · z with coordinates 〈Pi, z〉, i = 1, . . . , n. Consider now the
map

ϕ : Rk+1 → Rd

z 7→ ((D · z)α1 , . . . , (D · z)αd) ,

where (D · z)αj =
∏n

i=1〈Pi, z〉αij . Let x = ϕ(y). Then, xai = 〈Pi, y〉 for i = 1, . . . , n,
which gives (xa1 , . . . , xan) ∈ ker(C). Moreover, since y ∈ CνP , we have that x ∈ Rd

>0,
and then x is a positive solution of system (5.0.1).

Remark 5.1.6. Theorem 2.2 in [8] is a particular case of Theorem 5.1.5 taking a
Gale dual matrix D with the identity matrix Ik+1 at the top (in which case the
condition that (1, 0, . . . , 0) ∈ CP is trivially satisfied).
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5.2 Existence of positive solutions via Gale dual-

ity and degree theory

In this section, we present Theorem 5.2.7, which gives conditions on the Gale dual
matrices B and D that guarantee the existence of at least one positive solution of
the system (5.0.1). As we mentioned before, our results are based on degree theory.
Assume from now on that the matrix C is uniform, that is, that no maximal minor
of C vanish, and the necessary condition (5.1.3) is satisfied.

Given an open set U ⊂ Rk, a function h ∈ C0(U,Rk) and y ∈ Rk \ h(∂U),
the symbol deg(h, U, y) denotes the Brouwer degree (which belongs to Z) of h with
respect to (U, y). A main result in degree theory is that if deg(h, U, y) 6= 0, then
there exists at least one x ∈ U such that y = h(x). For background and the
main properties about Brouwer degree, we refer to Section 2 in the Supplementary
Information of [12] and Section 14.2 in [99].

We present the version of the Brouwer’s theorem that we will use. This version
is a particular case of Theorem 2 in the Supplementary Information of [12] (here we
take W empty), and also appears in the proof of Lemma 2 of [23]. Recall that a
vector v ∈ Rk points inwards a U ⊂ Rk U at a boundary point x ∈ ∂U , if for small
ε > 0 it holds that x+ εv ∈ U .

Theorem 5.2.1 ([12, 23]). Let h : Rk → Rk be a C1-function. Let U be an open,
nonempty, bounded and convex subset of Rk such that

i) h(x) 6= 0 for any x ∈ ∂U .

ii) for every x ∈ ∂U , the vector h(x) points inwards U at x.

Then,
deg(h, U, 0) = (−1)k.

In particular, there exists a point x in U such that h(x) = 0. Moreover, assuming the
zeros are nondegenerate, if there exists a zero x∗ ∈ U where the sign of the Jacobian
at x∗ is (−1)k+1, then there are at least three zeros and always an odd number.

Define the sign of any real number r by sign(r) = +1,−1, 0 according as r > 0,
r < 0 or r = 0 respectively. The sign of any vector r = (r1, . . . , rk) ∈ Rk is then
defined by sign(r) = (sign(r1), . . . , sign(rk)).

In view of Theorem 5.1.5, we look for the solutions of (5.1.8) in ∆P . Plugging
y0 = 1 in (5.1.8) and clearing the denominators, we get a generalized polynomial
system in ∆P on variables y = (y1, . . . , yk):

gj(y) = 0, j = 1, . . . , k, with gj(y) =
∏
bij>0

pi(y)bij −
∏
bij<0

pi(y)−bij , (5.2.1)

where
pi(y) = 〈Pi, (1, y)〉. (5.2.2)

We denote by g the Gale map:

g = (g1, . . . , gk) : Rk → Rk. (5.2.3)
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Definition 5.2.2. Given C ∈ Rd×n uniform, we denote by IC ⊂ {1, . . . , n} the set of
indexes corresponding to the minimal set of generators {Pi, i ∈ IC} of the polyhedral
cone CP .

Note that the set IC is unique since C is uniform and satisfies Condition (5.1.3),
which implies that P1, . . . , Pn lie in an open halfspace through the origin. The facets
of CνP are supported on the orthogonal hyperplanes P⊥i for i ∈ IC . Note that for any
i ∈ IC the vector Pi is an inward normal vector of CνP at any point in the relative
interior of the facet supported on P⊥i . It follows that the facets of the polytope
∆P are supported on the hyperplanes pi(y) = 0 for i ∈ IC , and that (di1, . . . , dik)
is an inward normal vector of ∆P at any point in the relative interior of the facet
supported on pi(y) = 0. Note also that IC depends on C and is independent of the
choice of a Gale dual matrix D. In fact, it can be characterized by the following
property: for any (z1, ..., zn) in the kernel of C, we have zi > 0 for i = 1, ..., n if and
only if zi > 0 for all i ∈ IC .

Definition 5.2.3. For any i ∈ IC denote by Fi the facet of ∆P supported on pi(y) =
0, and set

FL = ∩i∈LFi, for any L ⊂ IC .

Here by a face of ∆P we mean a face of the closure of ∆P . We denote by F ◦L the
relative interior of FL. We set

F(∆P ) = {L ⊂ IC : FL is a face of ∆P}.

We want to compute the number of zeros of the Gale map g in (5.2.3) inside ∆P .
The sign of g along the boundary of ∆P can sometimes be determined as follows.

Lemma 5.2.4. Let A ∈ R(d+1)×n as in (5.1.1), C ∈ Rd×n, and B ∈ Rn×k and
D ∈ Rn×(k+1) Gale dual matrices of A and C respectively. Let g = (g1, . . . , gk) the
Gale map as in (5.2.3). Let j ∈ {1, . . . , k}.

(1) Let Fi be any facet of ∆P and let x ∈ F ◦i . If bij 6= 0, then sign(gj(x)) =
− sign(bij).

(2) Let L ∈ F(∆P ) and x ∈ FL. Assume that {b`j : ` ∈ L} 6= {0}.

(i) If there exists `0, `1 ∈ L such that b`0j · b`1j < 0, then gj(x) = 0.

(ii) If b`j ≥ 0 for all ` ∈ L then sign(gj(x)) = −1, and if b`j ≤ 0 for all ` ∈ L
then sign(gj(x)) = +1.

Corollary 5.2.5. Let A ∈ R(d+1)×n as in (5.1.1), C ∈ Rd×n, and B ∈ Rn×k and D ∈
Rn×(k+1) Gale dual matrices of A and C respectively. Let g be the Gale map (5.2.3)
associated to B and D. If g(x) = 0 and x ∈ FL (so L ∈ F(∆P )), then for j =
1, . . . , k, either {b`j : ` ∈ L} = {0}, or {b`j : ` ∈ L} contains a positive and a
negative element.

In particular, if g vanishes in the relative interior of a facet F` then the `-th row
of B contains only zero entries.



110 CHAPTER 5. SIGN CONDITIONS FOR POSITIVE SOLUTIONS

Definition 5.2.6. We say that a matrix M is weakly mixed if any column of M
either has only zero entries, or contains a (strictly) positive and a (strictly) negative
element.

Otherwise said, a matrix M is not weakly mixed if and only if it has a non zero
column whose entries are all either nonpositive, or nonnegative.

Given B ∈ Rn×k and L ⊂ {1, . . . , n}, we denote by BL ∈ R|L|×k the submatrix
of B given by the rows with indexes in L. We now present the main result of this
section.

Theorem 5.2.7. Let A = {a1, . . . , an} ⊂ Rd and C ∈ Rd×n uniform. Let A ∈
R(d+1)×n as in (5.1.1), and B ∈ Rn×k and D ∈ Rn×(k+1) Gale dual matrices of A
and C respectively. Assume that 0 ∈ C◦ and that ∆P is a full dimensional bounded
polytope.

Assume furthermore that the following conditions hold:

(1) For any L ∈ F(∆P ) the submatrix BL ∈ R|L|×k is not weakly mixed.

(2) For any i ∈ IC the following holds:

• bij · dij ≥ 0 for j = 1, . . . , k,

• there exists j ∈ {1, . . . , k} such that bij · dij > 0,

• for all j ∈ {1, . . . , k}, if bij = 0 then dij = 0.

Then nA(C) > 0.

Proof. Since ∆P is a full dimensional and bounded, (1, 0, . . . , 0) ∈ CP . By Theo-
rem 5.1.5 it is sufficient to show that the Gale system (5.2.1) has at least one solution
in ∆P . First note that a vector v ∈ Rk points inwards ∆P at a point y contained in
the relative interior of a facet Fi (i ∈ IC) if and only if 〈(di1, . . . , dik), v〉 ≥ 0. More
generally v ∈ Rk points inwards ∆P at a point y in the relative interior of a face FL
(L ∈ F(∆P )) if and only if 〈(d`1, . . . , d`k), v〉 ≥ 0 for any ` ∈ L, by a classical result
of convex geometry. The assumption (1) ensures that g does not vanish at ∂∆P , by
Corollary 5.2.5. Condition (2) ensures that −g points inwards ∆P at each point x
in the relative interior of any facet Fi. Then −g also point inwards ∆P at any point
x in the relative interior of a face FL. The result follows now from Theorem 5.2.1,
taking U = ∆P and h = −g.

Example 5.2.8. Consider the codimension one case k = 1 (which is treated care-
fully in [5]). Then B ∈ R(d+2)×1 is a column matrix and its entries are the coefficients
λ1, . . . , λd+2 of a nontrivial affine relation on A. Assume that A is uniform (equiva-
lently, assume that A is a circuit 1). Then, B has no zero entry. Assume moreover
that C is uniform and that 0 ∈ C◦. Then, there exists a Gale dual matrix D such
that ∆P is a bounded interval of R. Moreover, there exists a vector δ ∈ R2 such

1Recall that a point configuration A of d+ 2 points is a circuit if any subset of d+ 1 points of
A is affinely independent.
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that 〈Pi, δ〉 > 0 for i = 1, . . . , d + 2, where P1, . . . , Pd+2 ∈ R2 are the row vectors
of D. Let α : {1, . . . , d + 2} → {1, . . . , d + 2} be the bijection such that all the
determinants det (Pαi , Pαi+1

) for i = 1, . . . , d+1 are positive. Then, by Theorem 2.9
in [5], we have nA(C) ≤ signvar(λα1 , λα2 , . . . , λαd+2

) and moreover the difference is
an even integer number (see Proposition 2.12 in [5]). The endpoints of the inter-
val ∆P are the roots of the two extremal polynomials pα1 and pαd+2

, equivalently,
IC = {α1, αd+2}. Now the Gale polynomial g = g1 : R→ R points inwards ∆P at its
vertices if and only if λα1 · λαd+2

< 0, which is equivalent to signvar(λα1 , λαd+2
) = 1.

But, signvar(λα1 , λα2 , . . . , λαd+2
) and signvar(λα1 , λαd+2

) have the same parity. Thus
g : R → R points inwards ∆P at its vertices if and only if nA(C) is odd by Propo-
sition 2.12 in [5]. Therefore, in the circuit case the sufficient condition to have
nA(C) > 0 which is given by Theorem 5.2.7 is equivalent to nA(C) being odd. Now,
for any integer d ≥ 2, it is not difficult to get examples of circuits A ⊂ Rd and
matrices C such that nA(C) is odd and is different from 1. This shows that our
sufficient condition does not imply nA(C) = 1 in general, and thus is not equivalent
to the condition given in [80] ensuring that nA(C) = 1.

We now present an example with k = d = 2 to illustrate Theorem 5.2.7.

Example 5.2.9. Let A ⊂ Z2 be the set of points a1 = (0, 4), a2 = (5, 4), a3 = (2, 8),
a4 = (3, 0) and a5 = (3, 5). Consider the matrix of coefficients

C =

(
−1 −1 1 1 0

−(3c+ 8) −c 2c+ 8 0 2

)
,

where c ∈ R is a parameter. The polynomial system of two polynomial equations
and two variables x, y:

−y4 − x5y4 + x2y8 + x3 = 0,
−(3c+ 8)y4 − cx5y4 + (2c+ 8)x2y8 + 2x3y5 = 0,

has support A and coefficient matrix C. Let A as in (5.1.1). Choose the following
Gale dual matrices of A and C :

B =


1 0
2 1
1 2
0 1
−4 −4

 D =


1 1 0
1 1 2
1 2 1
1 0 1
c −4 −4


Then p1(y) = 1 + y1, p2(y) = 1 + y1 + 2y2, p3(y) = 1 + 2y1 + y2, p4(y) = 1 + y2 and
p5(y) = c− 4y1 − 4y2. If c > 0, the convex polytope ∆P is nonempty, bounded and
has all the possible facets. Moreover, if c > 0, then the assumptions of Theorem 5.2.7
are satisfied and thus nA(C) > 0.

We use Singular [25] to check what happens when we vary the value of the
parameter c > 0.
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p2 = 0

p1 = 0

p5 = 0

p4 = 0

p3 = 0

Figure 5.1: The polytope ∆P of Example 5.2.9, with c > 0.

LIB "signcond.lib";

ring r=0, (c,x,y,t), dp;

poly f1=-y^4-x^5*y^4+x^2*y^8+x^3;

poly f2=-(3*c+8)*y^4-c*x^5*y^4+(2*c+8)*x^2*y^8+2*x^3*y^5;

ideal i=f1,f2, diff(f1,x)*diff(f2,y)-diff(f1,y)*diff(f2,x),x*y*t-1;

ideal j=std(i);

ideal k =eliminate(j, x*y*t);

k;

k[1]=48c12+1280c11+12288c10+49152c9+65467c8-2560c7-24576c6-

98304c5-131078c4+1280c3+12288c2+49152c+65563

The roots of this last polynomial in c correspond to systems with a degenerate
solution, and we can check that the only positive root of f1, f2 and their jacobian is
1. We check, again using Singular [25], with the library “signcond.lib” (implemented
by E. Tobis, based on the algorithms described in [4]) that if we take for example
c = 1

2
(c < 1), the system has 3 positive solutions, and if we take c = 8

7
(c > 1), the

system has only 1 positive solution. We use the command firstoct, that computes
the number of roots of a system in the first octant, that is, the positive roots.

LIB "signcond.lib";

ring r=0, (x,y), dp;

poly f1=-y^4-x^5*y^4+x^2*y^8+x^3;

poly f2=-(3*(1/2)+8)*y^4-(1/2)*x^5*y^4+(2*(1/2)+8)*x^2*y^8+2*x^3*y^5;

poly f3=-(3*(8/7)+8)*y^4-(8/7)*x^5*y^4+(2*(8/7)+8)*x^2*y^8+2*x^3*y^5;

ideal i2 = f1,f2;

ideal j2 = std(i2);

firstoct(j2);

3

ideal i3 = f1,f3;

ideal j3 = std(i3);
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firstoct(j3);

1

For c = 1
2
, the condition in [80] to ensure exactly one positive solution is trivially

not satisfied (as expected since the system has 3 positive solutions).
This computation of the number of positive solutions with the command firstoct

works for moderately sized polynomial systems with coefficients in Q or an algebraic
extension of it. Our results are particularly useful to study families of polynomials.

5.3 Dominating matrices

In this section, we present some conditions on A and C that guarantee that the
hypotheses of Theorem 5.2.7 are satisfied. Our main result is Theorem 5.3.6.

We first present conditions that guarantee that a matrix A admits a choice of a
Gale dual matrix B, which satisfies condition (1) of Theorem 5.2.7, for any uniform
matrix of coefficients C satisfying (5.1.3) (which means that it does not depend on
IC). When A ∈ Z(d+1)×n we will relate these conditions with complete intersection
lattice ideals in Section 5.5.

We recall some definitions from [46], with the difference that we replace rows by
columns and allow matrices with real entries.

Definition 5.3.1. A vector is said to be mixed if contains a strictly positive and a
strictly negative coordinate. More generally, a real matrix is called mixed if every
column contains a strictly positive and a strictly negative entry. A real matrix is
called dominating if it contains no square mixed submatrix. An empty matrix is
mixed and also dominating.

Observe that since a matrix A as in (5.1.1) has a row of ones, the columns of any
Gale dual matrix B add up to zero, and thus B is always mixed. Also note that a
mixed matrix is weakly mixed (see Definition 5.2.6), but the converse is not true in
general as a weakly mixed matrix can also contain a column with only zero entries.

Lemma 5.3.2. Assume that A ∈ R(d+1)×n is a uniform matrix. If B ∈ Rn×k is a
Gale dual matrix of A which is dominating, then condition (1) of Theorem 5.2.7 is
satisfied for all C ∈ Rd×n uniform satisfying 0 ∈ C◦.

Proof. Let C ∈ Rd×n uniform, and take any Gale dual matrix D ∈ Rn×(k+1) of
C such that ∆P is nonempty and bounded (which exists due to Lemma 5.1.3 and
Corollary 5.1.2).

If L = {`} ∈ F(∆P ), then BL weakly mixed means that it has only zeros,
which forces the matrix A minus the `-th column to have rank < d + 1. Consider
L ∈ F(∆P ) such that |L| ≥ 2. Note that |L| ≤ k since C is uniform. If BL is
weakly mixed then at least k − |L|+ 1 columns of BL contain only zero entries, for
otherwise we would get a square submatrix of size |L| × |L| containing a positive
and a negative coefficient in each column. But if k− |L|+ 1 columns of BL contain
only zeros, then we get k − |L|+ 1 linearly independent vectors in the kernel of the
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matrix A\L obtained from A by removing the columns indexed by L. This forces
the matrix (A\L) to have rank less than d + 1, which is a contradiction, since A is
uniform.

The following results will be useful. The following propositions are only stated
for matrices with integer matrices in [46], but clearly the proofs given in that paper
also work for real matrices.

Proposition 5.3.3 ([46], Corollary 2.7 and 2.8). If a real matrix is mixed domi-
nating, then any nonzero linear combination of its columns is a mixed vector. In
particular, its columns are linearly independent.

Proposition 5.3.4 ([45], Proposition 4.1). The left kernel of any mixed dominating
real matrix contains a positive vector.

We will also need the following Lemma:

Lemma 5.3.5. Assume that C ∈ Rd×n has maximal rank d and that 0 ∈ C◦. Let
D̃ ∈ Rn×k be any matrix of maximal rank k such that CD̃ = 0. Assume that

0 ∈ R>0P̃1 + · · ·+ R>0P̃n, (5.3.1)

where P̃1, . . . , P̃n are the row vectors of D̃. Then, there exists a positive vector D0

in the kernel of C which does not belong to the linear span of the column vectors of
D̃, and the matrix D ∈ Rn×(k+1) obtained from D̃ by adding D0 as a first column
vector is Gale dual to C and satisfies (1, 0, . . . , 0) ∈ CP .

Proof. By (5.3.1) there exists a positive vector in the left kernel of D̃, in other words,
a row vector λ with positive coordinates such that λ · D̃ = (0, . . . , 0). Since 0 ∈ C◦
we have ker(C)∩Rn

>0 6= ∅. Then, as ker(C) has dimension k+ 1 and D̃ has rank k,
there exists a vector D0 ∈ ker(C)∩Rn

>0 which does not belong to the linear span of
the column vectors of D̃. The matrix D ∈ Rn×k obtained from D̃ by adding D0 as
a first column vector is Gale dual to C. Moreover, we have λ ·D = (λ ·D0, 0, . . . , 0)
and thus (1, 0, . . . , 0) ∈ CP since λ ·D0 > 0 (here λ is a row vector, D0 is a column
vector so that λ ·D0 is a real number, which is positive since λ and D0 are positive
vectors).

If S ⊂ Rn if a subspace, we denote sign(S) = {sign(v) : v ∈ S}. Recall that we
denote the column vectors of a matrix B by B1, . . . , Bk.

Theorem 5.3.6. Let A = {a1, . . . , an} ⊂ Rd. Assume A ∈ R(d+1)×n as in (5.1.1),
and C ∈ Rd×n are uniform matrices. Suppose there exist B ∈ Rn×k Gale dual matrix
of A such that B is dominating. Assume 0 ∈ C◦ and sign(Bj) ∈ sign(ker(C)) for
each j = 1, . . . , k. Then, nA(C) > 0.

Proof. As B is dominating and A,C are uniform, condition (1) of Theorem 5.2.7
is satisfied by Lemma 5.3.2. As sign(Bj) ∈ sign(ker(C)) for j = 1, . . . , k, there
exist vectors D1, . . . , Dk in ker(C) such that sign(Dj) = sign(Bj) for each j =
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1, . . . , k. Consider the matrix D̃ with column vectors D1, . . . , Dk. Since B is mixed
dominating (it is mixed since A contains a row of ones) the matrix D̃ is mixed
dominating and furthermore D̃ has rank k by Proposition 5.3.3. Moreover, by
Proposition 5.3.4, there is a positive vector in the left kernel of D̃. Then, condition
(5.3.1) is satisfied, and thus by Lemma 5.3.5 and Corollary 5.1.2, there is a positive
vector D0 such that the matrix D with column vectors D0, . . . , Dk is Gale dual to
C and the associated polytope ∆P is nonempty and bounded. By construction,
condition (2) of Theorem 5.2.7 is also satisfied, and thus nA(C) > 0.

Recall that the support of a vector v ∈ Rn is defined as the set of its nonzero
coordinates, and we denote it by supp(v). Given a subspace S ⊂ Rn, a circuit of S
is a nonzero element s ∈ S with minimal support (with respect to inclusion). Given
a vector v, a circuit s = (s1, . . . , sn) is said to be conformal to v = (v1, . . . , vn)
if for any index i in supp(s), sign(si) = sign(vi). The next lemma shows that if
A admits a Gale dual mixed dominating matrix, then there exist a choice of Gale
mixed dominating matrix of A whose columns are circuits of ker(A). Note that all
the circuits of ker(A) can be described in terms of vectors of maximal minors of A,
and so they only depend on the associated oriented matroid of A.

Lemma 5.3.7. Assume A ∈ R(d+1)×n as in (5.1.1). Suppose there exist a dominat-
ing Gale dual matrix B ∈ Rn×k of A. Then, there exists B′ ∈ Rn×k a Gale dual
matrix of A such that B′ is dominating and every column of B′ is a circuit of ker(A).

Proof. It is a known result that every vector in ker(A) can be written as a nonneg-
ative sum of circuits conformal to it (see [89]). In particular, for every vector in
ker(A), there exists a circuit conformal to it. For each column Bi of B, i = 1, . . . , k,
take a circuit B′i of ker(A) such that B′i is conformal to Bi. Now, we take B′ the
matrix with columns B′1, . . . , B

′
k. Every column of B′ is a circuit of ker(A), B′ is

mixed since A has a row of ones, and is dominating because B′i is conformal to Bi

for each i = 1, . . . , k and the matrix B is dominating. Since B′ is mixed dominating,
the columns of B′ are linearly independent by Proposition 5.3.3, and then B′ is a
Gale dual matrix of A.

5.4 Geometric conditions on A and C

The main result of this section is Theorem 5.4.8, where we give geometric conditions
on A and C that guarantee that the hypotheses of Theorem 5.2.7 are satisfied.

A characterization of matrices A admitting a mixed dominating Gale dual matrix
B can be found in [45]. Recall that our definition of mixed dominating matrix differs
from the one in [45] by replacing rows by columns. Here we present this result with
our notation. We denote the convex hull of a point configuration A by chull(A).
Recall also that we assume n ≥ d + 2, so that A cannot be the set of vertices of a
d-dimensional simplex.
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Theorem 5.4.1 ([45], Theorem 5.6 ). Let A = {a1, . . . , an} ⊂ Rd, with n ≥ d + 2
and A ∈ R(d+1)×n as in (5.1.1). Then A admits a mixed dominating Gale dual
matrix B if and only if A can be written as a disjoint union A = A1 tA2 such that

(1) the polytopes chull(A1) and chull(A2) intersect in exactly one point,

(2) the corresponding matrices A1 and A2 as in (5.1.1) of A1 and A2 respectively,
admit mixed dominating Gale dual matrices, and

(3) dim chull(A) = dim chull(A1) + dim chull(A2).

Moreover, we have:

Lemma 5.4.2 ([45], Corollary 5.7). If A admits a mixed dominating Gale dual
matrix B then chull(A) has at most 2d vertices.

In particular, by Lemma 5.3.2, we have:

Corollary 5.4.3. Let A = {a1, . . . , an} ⊂ Rd. Assume that A as in (5.1.1) is
uniform and that A ⊂ Rd can be decomposed as a disjoint union A = A1 tA2 such
that conditions (1), (2) and (3) of Theorem 5.4.1 hold. Then, there exists a Gale
dual matrix B ∈ Zn×k of A such that condition (1) of Theorem 5.2.7 is satisfied.

The following observation says that if we have a point configuration Av ⊂ Rd

such that the corresponding matrix Av admits a Gale dual mixed dominating matrix,
then, for any other point configuration A ⊂ Rd that contains Av and their convex
hulls chull(A), chull(Av) coincide (that is, A can be obtained from Av adding points
inside the convex hull), the corresponding matrix A also admits a Gale dual mixed
dominating matrix.

Lemma 5.4.4. Let A = {a1, . . . , an}, Av ⊂ Rd be two point configurations such
that Av ⊂ A. Assume that the corresponding matrix A ∈ R(d+1)×n is uniform and
that the following conditions hold:

(1) chull(A) = chull(Av),

(2) the corresponding matrix Av ∈ R(d+1)×|Av | has a Gale dual matrix Bv which is
dominating.

Then, there exists a a mixed dominating Gale dual matrix B ∈ Zn×k of A and thus
condition (1) of Theorem 5.2.7 is satisfied.

Note that Lemma 5.4.4 follows from applying several times Theorem 5.4.1 (taking
one point from Av as A2), but we present a constructive proof.

Proof of Lemma 5.4.4. Without loss of generality, assume that Av = {a1, . . . , as},
with s ≥ d. For i = s + 1, . . . , n, there exists a subset Ai of Av such that Ai is the
set of vertices of a d-simplex and ai is contained in the interior of chull(Ai). Then
there exists an affine relation on Ai ∪ {ai} where the coefficient of ai is equal to one
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and the coefficients of the points of Ai are all negative. Using the affine relations
on Av given by the column vectors of Bv, we get k linearly independent vectors in
the kernel of A which are the column vectors of a upper triangular block matrix B
Gale dual to A of the following form:

B =

(
Bv R
0 In−s

)
,

where R has only nonpositive entries (and at least two negative entries in each
column) and In−s is the identity matrix of size n − s. Clearly, if Bv is dominating
then B is dominating and thus by Lemma 5.3.2 the first item of Theorem 5.2.7 is
satisfied.

We have the following corollary.

Corollary 5.4.5. Let A = {a1, . . . , an}, Av ⊂ Rd be two point configurations such
that Av ⊂ A and chull(A) = chull(Av). Assume that the corresponding matrix A
is uniform and that Av is either the set of vertices of d-simplex, or a circuit in Rd.
Then, there exists a Gale dual matrix B ∈ Zn×k of A such that condition (1) of
Theorem 5.2.7 is satisfied.

Consider A and the point configuration C = {C1, . . . , Cn} given by the columns
of the coefficient matrix C. Consider the (d+ 1)× n-matrix

C̄ =

(
1 · · · 1

C

)
and assume that A and C̄ are uniform. Given a subset J ⊂ {1, . . . , n}, we denote
AJ = {aj : j ∈ J}.

Definition 5.4.6. Given a subset I ⊂ {1, . . . , n}, we say that A and C are I-
compatible if the following conditions hold:

(1) the corresponding matrices AI and CI admit Gale dual matrices which are
mixed dominating and have the same sign pattern,

(2) chull(AI) = chull(A) and chull(CI) = chull(C ),

(3) for each j /∈ I, there exist J ⊂ I, with |J | = d + 1, such that aj ∈ chull(AJ)
and Cj ∈ chull(CJ).

The condition that A and C are I-compatible can be translated in terms of
signs of maximal minors of A and C̄. Also note that not all the maximal minors
need to have the same sign, that is, the configurations may have different matroids.
The following Example 5.4.7 shows two I-compatible configurations with different
matroids.
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Figure 5.2: Example of A and C I-compatible.

Example 5.4.7. We show in Figure 5.4 an example of two point configurations, A =
{a1, . . . , a6} and C = {C1, . . . , C6} with d = 2 and k = 3, which are I-compatible,
for I = {1, 2, 3, 4}. In this case a4 ∈ ch(AI4), C4 ∈ ch(CI4) for I4 = {0, 2, 3} and
a5 ∈ ch(AI5), C5 ∈ ch(CI5) for I5 = {0, 1, 2}.

We have the following result:

Theorem 5.4.8. Assume that A, C and C̄ are uniform. Suppose 0 ∈ C◦, and there
exists I ⊂ {1, . . . , n} such that A and C are I-compatible. Then, nA(C) > 0.

Proof. Let BI be a Gale dual matrix of AI as in Condition (1) of Definition 5.4.6. As
aj ∈ chull(AI) for each j /∈ I, we can use Lemma 5.4.4. We construct a dominating
matrix B, using the matrix BI and using for each aj, j /∈ I, the affine relation given
by the circuit aj ∪ AJ , with J as in Condition (3) of Definition 5.4.6, to obtain a
vector in the kernel of A as in the proof of Lemma 5.4.4. Conditions (1) and (3) of
the definition of being I-compatible, mean that there exist k vectors in the kernel
of C̄ with the same sign pattern as the columns of the constructed B, and these
k vectors are linearly independent because they form a mixed dominating matrix.
We have that ker (C̄) ⊂ ker(C), and sign(B1), . . . , sign(Bk) ∈ sign(ker(C)). We can
apply Theorem 5.3.6 and then nA(C) > 0.

Remark 5.4.9. When |I| = d+2, condition (1) in Definition 5.4.6 can be translated
in terms of signatures of circuits. Given a circuit U = {u1, . . . , ud+2} ⊂ Rd, and a
nonzero affine relation λ ∈ Rd+2 among the ui, we call Λ+ = {i ∈ {1, . . . , d + 2} :
λi > 0} and Λ− = {i ∈ {1, . . . , d+ 2} : λi < 0}. The pair (Λ+,Λ−) is usually call a
signature of U . As U is a circuit, the pairs (Λ+,Λ−) and (Λ−,Λ+) are the two possible
signatures. Then, we consider the (unordered) signature partition S(U) = {Λ+,Λ−}.
Given a subset I ⊂ {1, . . . , n}, with |I| = d + 2, and A and C uniform, condition
(1) in Definition 5.4.6 is equivalent to the following condition:

(1’) S(AI) = S(CI)

In this case, condition (3) in Definition 5.4.6 implies that {aj} ∪ AJ and {Cj} ∪ CJ

have the same signature partition, which is (d+ 1, 1).
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5.4.1 The case k = 2

The point configurations such that the corresponding matrix admits a Gale dual
which is dominating are limited. So, if we are not in this case, checking condition
(1) of Theorem 5.2.7 involves knowing the incidences of the facets of the polytope
∆P . However, we now show that in case A has codimension k = 2, there always
exists a choice of Gale dual matrix B such that we can conclude that nA(C) > 0
with the help of Theorem 5.2.7 without checking Condition (1) as it becomes a
consequence of the other conditions.

Lemma 5.4.10. Assume that A and C are uniform matrices and k = 2. Suppose
that 0 ∈ C◦. Then there exists a matrix B Gale dual to A such that for any matrix
D Gale dual to C for which ∆P is nonempty, bounded and the condition (2) of
Theorem 5.2.7 is satisfied, condition (1) of Theorem 5.2.7 is satisfied, and thus
nA(C) > 0.

Proof. Let B be any Gale dual matrix of A with row vectors b1, . . . , bn. Choose
any i2 ∈ IC . Then there exist i1 ∈ IC such that the cone R>0bi1 + R<0bi2 does not
contain vectors bi with i ∈ IC . Note that the latter cone has dimension two since A
is uniform (which implies that B is uniform as well). There exists a matrix R of rank
two, with integer entries if A in an integer matrix, such that B{i1,i2} · R = I2 (if we
assume that A, B have integer entries, then there exists a matrix R of rank two such
that B{i1,i2} ·R = a·I2 where a = | det(B{i,j})|). Consider the matrix B′ = B ·R, with
row vectors b′1, . . . , b

′
n. Then B′ is a Gale dual matrix to A such that b′i1 = (1, 0),

b′i2 = (0, 1) and the open quadrant R>0 × R<0 does not contain any vector b′i with
i ∈ IC . Note also that if i ∈ IC and i 6= i1, i2 then both coordinates of b′i are nonzero
for otherwise this would give a vanishing maximal minor of B′. In particular, we get
b′i 6= 0, and thus b′i is not weakly mixed, for all i ∈ IC . Suppose now that there are
two distinct vectors b′i and b′j with i, j ∈ IC such that the submatrix B{i,j} is weakly
mixed. Then these row vectors lie in opposite quadrants of R2 and these quadrants
should be R2

>0 and R2
<0. But then the cone R>0b

′
i+R>0b

′
j contains either b′i1 = (1, 0)

or b′i2 = (0, 1), and thus {i, j} /∈ FL.

Given a vector v ∈ Rn and I ⊂ {1, . . . , n} we denote by vI ∈ R|I| the vector
obtained from v after removing the coordinates with indexes that do not belong to
I. Given a set S ⊂ Rn, we denote SI = {vI : v ∈ S}. In case that there exists a
Gale dual matrix B with rows in each of the quadrants, we have the following result.

Lemma 5.4.11. Given A ∈ R(d+1)×(d+3) uniform, let B ∈ R(d+3)×2 be a Gale dual
matrix of A. Suppose there exists rows of B, bij , with 1 ≤ j ≤ 4, such that bij lies
in the j-th open quadrant of R2. Let C ∈ Rd×n uniform. Suppose that 0 ∈ C◦, and
suppose that the index ij corresponds to a facet of any associated polytope ∆P , for
1 ≤ j ≤ 4. If sign((Bj)IC ) ∈ sign((ker(C))IC ) for j = 1, 2, then nA(C) > 0.

Proof. As sign((Bj)IC ) ∈ sign((ker(C))IC ) for j = 1, 2, there are vectors D1, D2 ∈
ker(C) such that sign((Dj)IC ) = sign((Bj)IC ) for each j = 1, 2. We can assume
that D1 and D2 are linearly independent. If not, the zero coordinates of D1 and D2
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(which are at most two, since C is uniform) have to be the same. That is, (D1)j = 0
if and only if (D2)j = 0 (otherwise, they can not be linearly dependent). Suppose
that (D1)j = (D2)j = 0 for certain j. If j ∈ IC , then (B1)j = (B2)j = 0, but since A
is uniform, B1 and B2 have at most one zero coordinate, and then, B1 and B2 are
scalar multiples of each other, a contradiction. Then if (D1)j = (D2)j = 0, j /∈ IC .
We take a vector v in ker(C) such that D1 and v are linearly independent. Then we
can take D′2 = D2 +λv, with λ small enough such that sign((D2)IC ) = sign((B2)IC ).

So, we can suppose that D1 and D2 are linearly independent. Consider the
matrix D̃ with column vectors D1 and D2. We have that 0 belongs to the open
cone generated by the rows of D̃, because the ij-th row of D̃ belongs to the j-th
open quadrant, then Condition 5.3.1 of Lemma 5.3.5 is satisfied. As 0 ∈ C◦, by
Lemma 5.3.5 and Corollary 5.1.1, there exists a positive vector D0 such that the
matrix obtained from D̃ by adding D0 as a first column vector is Gale dual to C
and the associated polytope ∆P is nonempty and bounded. Also note that ∆P has a
facet for each row vector ij of D̃, each one in the j-quadrant of R2, for j = 1, . . . , 4.
Then, if we have a 2×2 mixed submatrix of B, it does not correspond to a submatrix
BL, with L ∈ F(∆P ) (and any row of D̃ corresponding to i ∈ IC is not equal to
zero). Then, all the conditions of Theorem 5.2.7 are satisfied and nA(C) > 0.

5.5 Algebraic conditions and real solutions of in-

teger configurations

In this section we will consider integer configurations A and thus, integer matrices
A. Interestingly, in Corollary 5.5.2 we will relate Lemma 5.3.2 with known algebraic
results in the study of toric ideals [97, Ch.4]. Indeed, we summarize in § 5.5.1 some
known algebraic results that show the existence of a mixed dominating Gale dual
matrix is equivalent to the fact that there is a full dimensional sublattice of the in-
teger kernel kerZ(A) whose associated lattice ideal (5.5.1) is a complete intersection.
This means that it can be generated by as many polynomials as the codimension
of its zero set. In the opposite spectrum, an ideal is not Cohen-Macaulay when its
homological behavior is complicated (see for instance [27]). When k = 2, we also
consider lattice ideals which are not Cohen-Macaulay. Proposition 5.5.4 shows how
to deal with this bad algebraic case. Also, in § 5.5.2 we naturally extend the search
for positive solutions to the search for real solutions with nonzero coordinates.

5.5.1 Algebraic conditions

A polynomial ideal is called binomial if it can be generated with polynomials with
at most two terms. A subgroup L ⊂ Zn is called a lattice. We associate to a lattice
L the following binomial ideal:

IL = 〈xu+ − xu− : u ∈ L〉 ⊂ R[x1, . . . , xn], (5.5.1)
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where u = u+ − u− is the decomposition in positive and negative components. For
example, if u = (1,−2, 1, 0) ∈ Z4, then xu

+ − xu− = x1x3 − x2
2.

Given a configuration A = {a1, . . . , an} ⊂ Zd of integral points, and the asso-
ciated matrix A ∈ Z(d+1)×n, let B ∈ Zn×k a Gale dual matrix of A, and denote
by B1, . . . , Bk the columns vectors of B. Note that {B1, . . . , Bk} is a Q-basis of
kerZ(A), but it is not necessarily a Z-basis unless the greatest common divisor of
the maximal minors of B is equal to 1. When this is the case, we will say that B is
a Z-Gale dual of A. We associate to any choice of Gale dual B of A the following
lattice:

LB = ZB = ZB1 ⊕ · · · ⊕ ZBk ⊂ Zn,

and its corresponding lattice ideal ILB . In particular, when LB = kerZ(A), then the
lattice ideal ILB is the so called toric ideal IA. We have the following known result
from [46]. See also Theorem 2.1 of [77], where the notation is similar to the notation
of this paper.

Theorem 5.5.1 ([46], Theorem 2.9). The lattice ideal ILB is a complete intersection
if and only if LB = LB′ for some dominating matrix B′ ∈ Zn×k. In this case,
ILB = 〈xu+ − xu− : u is a column of B′〉.

The following result is a direct consequence of Lemma 5.3.2 and Theorem 5.5.1.

Corollary 5.5.2. If A ∈ Z(d+1)×n as in (5.1.1) and C ∈ Rd×n are uniform matrices
and B ∈ Zn×k is a Gale dual matrix of A such that the lattice ideal ILB is a complete
intersection, then there exists a Gale dual matrix B′ ∈ Zn×k of A which satisfies the
condition (1) of Theorem 5.2.7.

Given A, let B ∈ Zn×k a Gale dual matrix of A, and consider the lattice LB =
ZB. The set of rows of B, {b1, . . . , bn} ⊂ Zk is called a Gale diagram of LB. Any
other Z-basis for LB yields a Gale diagram, which means that Gale diagrams are
unique up to an invertible matrix with integer coefficients. The following proposition
from [85], relates Gale diagrams with algebraic properties of the lattice ideal LB
when k = 2:

Proposition 5.5.3 ([85], Proposition 4.1). Given A ∈ Z(d+1)×(d+3), let B ∈ Zn×2 be
a Gale dual matrix of A. The lattice ideal ILB is not Cohen-Macaulay if and only if
it has a Gale diagram which intersects all the four open quadrants of R2.

The following result follows from Proposition 5.5.3 and Lemma 5.4.11.

Proposition 5.5.4. Given A ∈ Z(d+1)×(d+3) uniform, let B ∈ Zn×2 be a Gale dual
matrix of A. Suppose that the lattice ideal ILB is not Cohen-Macaulay and let B′

be any other Gale Dual matrix of A such that the columns of B′ form a Z-basis
of LB and such that the corresponding Gale diagram {b′1, . . . , b′n} intersects all the
four open quadrants of R2. Let b′ij , with 1 ≤ j ≤ 4, the rows of B′ such that

b′ij lies in the j-th open quadrant of R2. Let C ∈ Rd×n uniform. Suppose that
0 ∈ C◦, and suppose that ij corresponds to a facet of any polytope ∆P associated. If
sign((B′j)IC ) ∈ sign((ker(C))IC ) for j = 1, 2, then nA(C) > 0.
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5.5.2 Real solutions

When A has integer entries, (5.0.1) is a system of Laurent polynomials with real
coefficients, which are defined over the real torus (R∗)d. In this subsection, we are
interested on the existence of real solutions of (5.0.1) with nonzero coordinates for
integer matrices A of exponents. Our main result is Theorem 5.5.10. We will only
consider matrices B which are Z-Gale dual to A, whose columns generate kerZ(A)
over Z.

Given any s = (s1, . . . , sd) ∈ Zd, denote by Rd
s the orthant

Rd
s = {x ∈ Rd : (−1)sixi > 0, i = 1, . . . , d}.

In particular, Rd
s = Rd

>0 if s ∈ 2Zd. Let x ∈ (R∗)d be a solution of (5.0.1). Then
x ∈ Rd

s for some s ∈ Zd (which is unique up to adding a vector in 2Zd). Setting
zi = (−1)sixi, we get that z = (z1, . . . , zd) is a positive solution of the system
with exponent matrix A and coefficient matrix Cs defined by (Cs)ij = (−1)〈s,aj〉cij.
Moreover, if D is a matrix Gale dual to C, then the matrix Ds defined by (Ds)ij =
(−1)〈s,ai〉dij is Gale dual to Cs. Denote by Pi,s the i-th row vector of Ds. Thus
Pi,0 = Pi (i-th row of D) and Pi,s = (−1)〈s,ai〉Pi, i = 1, . . . , n. Denote by CPs the
positive cone generated by Pi,s for i = 1, . . . , n.

Let MP denote the complement in Rk+1 of the hyperplane arrangement given
by the hyperplanes {y ∈ Rk+1 : 〈Pi, y〉 = 0}, i = 1, . . . , n. For any ε ∈ Zn denote
by Cνε the connected component of MP defined by

Cνε = {y ∈ Rk+1 : (−1)εi〈Pi, y〉 > 0, i = 1, . . . , n}.

Note that Cν0 = CνP .
Write A′ for the matrix with column vectors a1, . . . , an (A′ is obtained by remov-

ing the first row of A). It is convenient to introduce the map ψ : Zd → Z1×n defined
by ψ(s) = s · A′ (here we see s ∈ Zd as a row vector, i.e. as an element of Z1×d).
Then, for any integer vector b ∈ ker(A) we have:

n∏
i=1

〈Pi,s, y〉bi = (−1)〈s,A
′b〉

n∏
i=1

〈Pi, y〉bi =
n∏
i=1

〈Pi, y〉bi .

Thus, applying Theorem 5.1.5 to the system with coefficient matrix Cs and exponent
matrix A, we obtain that the real solutions of (5.0.1) contained in the orthant Rd

s

are in bijection with the solutions of (5.1.8) in the quotient PCνψ(s) of the open cone

Cνψ(s) by the equivalence relation ∼ (y ∼ y′ if and only if there exists α > 0 such

that y = αy′), defined in Section 5.1.
We have proved the following result:

Proposition 5.5.5. For any s ∈ Zd, there is a bijection between the real solutions
of (5.0.1) contained in Rd

s and the solutions of (5.1.8) in PCνψ(s), which induces

a bijection between the solutions of (5.0.1) in Rd
s and the solutions of (5.1.8) in

∆Ps = Cνψ(s) ∩ {y0 = 1} when (1, 0, . . . , 0) lies in the closure of the cone CPs.
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If M is any matrix or vector with integer entries, we denote by [M ]2 the matrix
or vector with coefficients in the field Z/2Z obtained by taking the image of each
entry by the quotient map Z→ Z/2Z. Note that the following relation between the
ranks holds: rk([A]2) = rk([A′]2) if [(1, 1, . . . , 1)]2 belongs to the row span of [A′]2
and rk([A]2) = rk([A′]2) + 1 otherwise. The following result is straightforward.

Lemma 5.5.6. For any s, s′ ∈ Zd, we have Cνψ(s) = Cνψ(s′) if and only if [s′ − s]2

belongs to the left kernel of [A′]2. For each s ∈ Zd, there are 2d−rk([A′]2) distinct
orthants Rd

s′ such that Cνψ(s) = Cνψ(s′). Finally, the image of Zd via the map s 7→ Cνψ(s)

consists of 2rk([A′]2) connected components of MP .

Recall that since A contains a row of ones, each polynomial in (5.1.8) is homo-
geneous of degree 0, which implies the following fact.

Lemma 5.5.7. For any ε ∈ Zn, the map y 7→ −y induces a bijection between the
solutions of (5.1.8) in Cνε and the solutions of (5.1.8) in Cνε+(1,1,...,1).

Choose a Z-Gale dual B ∈ Zn×k of A and consider the Gale dual system (5.1.8)
it defines for a given Gale dual matrix D of a full rank matrix C.

Proposition 5.5.8. 1. Assume rk([A]2) = rk([A′]2) and let ε ∈ Zn. If (5.1.8)
has a solution in Cνε then there exists s ∈ Zd such that [ε]2 = [ψ(s)]2.

2. Assume now rk([A]2) > rk([A′])2 and let ε ∈ Zn. If (5.1.8) has a solution
in Cνε then either there exists s ∈ Zd such that [ε]2 = [ψ(s)]2, or there exists
s ∈ Zd such that [ε]2 + [(1, 1, . . . , 1)]2 = [ψ(s)]2. Moreover, there do not exist
s, s′ ∈ Zd such that [ψ(s′)]2 = [(1, 1, . . . , 1)]2 + [ψ(s)]2, so that only one of the
two previous cases occurs.

Proof. Let y be a solution of (5.1.8) in Cνε and let b be any element of ker(A) ∩ Zn.
Writing b as an integer linear combination of the column vectors of B and using
(5.1.8), we get

∏n
i=1〈Pi, y〉bi = 1. Then, using y ∈ Cνε we obtain that

∑n
i=1 εibi

is an even integer number. The fact that the column vectors of B form a basis of
ker(A)∩Zn implies that the column vectors of [B]2 form a basis of ker([A]2) (in other
words [B]2 is Gale dual to [A]2). Then,

∑n
i=1 εibi ∈ 2Z for any b ∈ ker(A) ∩ Zn is

equivalent to the fact that [ε]2 belongs to the left kernel of [B]. This left kernel is the
image of the map Zd+1 → Z1×n sending (s0, s1, . . . , sd) to [(s0, s1, . . . , sd)]2 · [A]2 =
[s0(1, 1, . . . , 1)]2 + [ψ(s)]2, where s = (s1, . . . , sd). The image of this map coincides
with the image of the map s 7→ [ψ(s)]2 precisely when rk([A]2) = rk([A′]2), which
proves item 1). To finish it remains to see that if rk([A]2) > rk([A′]2) there do not
exist distinct s, s′ ∈ Z1×(d) such that [ψ(s′)]2 = [(1, 1, . . . , 1) + ψ(s)]2 for otherwise
[(1, . . . , 1)]2 would belong to the row span of [A′]2.

Example 5.5.9. If a1, . . . , an ∈ 2Zd, then rk([A′]2) = 0 and rk([A]2) = 1. Moreover,
the number of real solutions of (5.0.1) is 2d times its number of positive solutions,
the latter number being equal to the number of solutions of (5.1.8) in Cν0 = CνP by
Theorem 5.1.5.
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As a direct consequence of Proposition 5.5.5, Proposition 5.5.8, and Lemma 5.5.6,
we get the following result.

Theorem 5.5.10. There exists a solution of (5.0.1) in (R∗)d if and only if there
exists a solution of (5.1.8) in the complement MP of the hyperplane arrangement
defined by P1, . . . , Pn. Moreover,

(1) For any s ∈ Zd there is a bijection between the solutions of (5.0.1) in Rd
s and

the solutions of (5.1.8) in PCνε , with [ε]2 = [ψ(s)]2.

(2) There are at most 2rk[A]2 connected components Cνε of MP where (5.1.8) has a
solution.

Given A and C and a choice of Gale dual matrices B,D, we saw in the proof
of Theorem 5.2.7, that under the hypotheses of the theorem, it follows from Theo-
rem 5.1.5 that nA(C) > 0 is indeed equivalent to the existence of a solution to (5.2.1)
in ∆P . In the previous sections, we have given different sufficient conditions on D
and B such that system (5.2.1) has at least one solution in ∆P . When A has integer
entries it is then enough to check if these sufficient conditions are satisfied by B
and any matrix Dε obtained by multipliying the i-th row of D by (−1)εi for some
ε ∈ Zn. In this case, (5.0.1) has at least one solution in (R∗)d by Theorem 5.5.10.
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